Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem9.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem9.x |
|- ( ph -> X e. RR ) |
3 |
|
fourierdlem9.r |
|- ( ph -> Y e. RR ) |
4 |
|
fourierdlem9.w |
|- ( ph -> W e. RR ) |
5 |
|
fourierdlem9.h |
|- H = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
6 |
|
0red |
|- ( ( ( ph /\ s e. ( -u _pi [,] _pi ) ) /\ s = 0 ) -> 0 e. RR ) |
7 |
1
|
adantr |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> F : RR --> RR ) |
8 |
2
|
adantr |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> X e. RR ) |
9 |
|
pire |
|- _pi e. RR |
10 |
9
|
renegcli |
|- -u _pi e. RR |
11 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
12 |
10 9 11
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
13 |
12
|
sseli |
|- ( s e. ( -u _pi [,] _pi ) -> s e. RR ) |
14 |
13
|
adantl |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> s e. RR ) |
15 |
8 14
|
readdcld |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( X + s ) e. RR ) |
16 |
7 15
|
ffvelrnd |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( F ` ( X + s ) ) e. RR ) |
17 |
16
|
adantr |
|- ( ( ( ph /\ s e. ( -u _pi [,] _pi ) ) /\ -. s = 0 ) -> ( F ` ( X + s ) ) e. RR ) |
18 |
3 4
|
ifcld |
|- ( ph -> if ( 0 < s , Y , W ) e. RR ) |
19 |
18
|
ad2antrr |
|- ( ( ( ph /\ s e. ( -u _pi [,] _pi ) ) /\ -. s = 0 ) -> if ( 0 < s , Y , W ) e. RR ) |
20 |
17 19
|
resubcld |
|- ( ( ( ph /\ s e. ( -u _pi [,] _pi ) ) /\ -. s = 0 ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. RR ) |
21 |
14
|
adantr |
|- ( ( ( ph /\ s e. ( -u _pi [,] _pi ) ) /\ -. s = 0 ) -> s e. RR ) |
22 |
|
neqne |
|- ( -. s = 0 -> s =/= 0 ) |
23 |
22
|
adantl |
|- ( ( ( ph /\ s e. ( -u _pi [,] _pi ) ) /\ -. s = 0 ) -> s =/= 0 ) |
24 |
20 21 23
|
redivcld |
|- ( ( ( ph /\ s e. ( -u _pi [,] _pi ) ) /\ -. s = 0 ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) e. RR ) |
25 |
6 24
|
ifclda |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) e. RR ) |
26 |
25 5
|
fmptd |
|- ( ph -> H : ( -u _pi [,] _pi ) --> RR ) |