Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem90.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
2 |
|
fourierdlem90.t |
|- T = ( B - A ) |
3 |
|
fourierdlem90.m |
|- ( ph -> M e. NN ) |
4 |
|
fourierdlem90.q |
|- ( ph -> Q e. ( P ` M ) ) |
5 |
|
fourierdlem90.f |
|- ( ph -> F : RR --> CC ) |
6 |
|
fourierdlem90.6 |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
7 |
|
fourierdlem90.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
8 |
|
fourierdlem90.c |
|- ( ph -> C e. RR ) |
9 |
|
fourierdlem90.d |
|- ( ph -> D e. ( C (,) +oo ) ) |
10 |
|
fourierdlem90.o |
|- O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = C /\ ( p ` m ) = D ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
11 |
|
fourierdlem90.h |
|- H = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) |
12 |
|
fourierdlem90.n |
|- N = ( ( # ` H ) - 1 ) |
13 |
|
fourierdlem90.s |
|- S = ( iota f f Isom < , < ( ( 0 ... N ) , H ) ) |
14 |
|
fourierdlem90.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
15 |
|
fourierdlem90.J |
|- L = ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) |
16 |
|
fourierdlem90.17 |
|- ( ph -> J e. ( 0 ..^ N ) ) |
17 |
|
fourierdlem90.u |
|- U = ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) |
18 |
|
fourierdlem90.g |
|- G = ( F |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) |
19 |
|
fourierdlem90.r |
|- R = ( y e. ( ( ( L ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) |-> ( G ` ( y - U ) ) ) |
20 |
|
fourierdlem90.i |
|- I = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } , RR , < ) ) |
21 |
1 3 4
|
fourierdlem11 |
|- ( ph -> ( A e. RR /\ B e. RR /\ A < B ) ) |
22 |
21
|
simp1d |
|- ( ph -> A e. RR ) |
23 |
21
|
simp2d |
|- ( ph -> B e. RR ) |
24 |
22 23
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
25 |
21
|
simp3d |
|- ( ph -> A < B ) |
26 |
22 23 25 15
|
fourierdlem17 |
|- ( ph -> L : ( A (,] B ) --> ( A [,] B ) ) |
27 |
22 23 25 2 14
|
fourierdlem4 |
|- ( ph -> E : RR --> ( A (,] B ) ) |
28 |
|
elioore |
|- ( D e. ( C (,) +oo ) -> D e. RR ) |
29 |
9 28
|
syl |
|- ( ph -> D e. RR ) |
30 |
|
elioo4g |
|- ( D e. ( C (,) +oo ) <-> ( ( C e. RR* /\ +oo e. RR* /\ D e. RR ) /\ ( C < D /\ D < +oo ) ) ) |
31 |
9 30
|
sylib |
|- ( ph -> ( ( C e. RR* /\ +oo e. RR* /\ D e. RR ) /\ ( C < D /\ D < +oo ) ) ) |
32 |
31
|
simprd |
|- ( ph -> ( C < D /\ D < +oo ) ) |
33 |
32
|
simpld |
|- ( ph -> C < D ) |
34 |
2 1 3 4 8 29 33 10 11 12 13
|
fourierdlem54 |
|- ( ph -> ( ( N e. NN /\ S e. ( O ` N ) ) /\ S Isom < , < ( ( 0 ... N ) , H ) ) ) |
35 |
34
|
simpld |
|- ( ph -> ( N e. NN /\ S e. ( O ` N ) ) ) |
36 |
35
|
simprd |
|- ( ph -> S e. ( O ` N ) ) |
37 |
35
|
simpld |
|- ( ph -> N e. NN ) |
38 |
10
|
fourierdlem2 |
|- ( N e. NN -> ( S e. ( O ` N ) <-> ( S e. ( RR ^m ( 0 ... N ) ) /\ ( ( ( S ` 0 ) = C /\ ( S ` N ) = D ) /\ A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) ) |
39 |
37 38
|
syl |
|- ( ph -> ( S e. ( O ` N ) <-> ( S e. ( RR ^m ( 0 ... N ) ) /\ ( ( ( S ` 0 ) = C /\ ( S ` N ) = D ) /\ A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) ) |
40 |
36 39
|
mpbid |
|- ( ph -> ( S e. ( RR ^m ( 0 ... N ) ) /\ ( ( ( S ` 0 ) = C /\ ( S ` N ) = D ) /\ A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) |
41 |
40
|
simpld |
|- ( ph -> S e. ( RR ^m ( 0 ... N ) ) ) |
42 |
|
elmapi |
|- ( S e. ( RR ^m ( 0 ... N ) ) -> S : ( 0 ... N ) --> RR ) |
43 |
41 42
|
syl |
|- ( ph -> S : ( 0 ... N ) --> RR ) |
44 |
|
elfzofz |
|- ( J e. ( 0 ..^ N ) -> J e. ( 0 ... N ) ) |
45 |
16 44
|
syl |
|- ( ph -> J e. ( 0 ... N ) ) |
46 |
43 45
|
ffvelrnd |
|- ( ph -> ( S ` J ) e. RR ) |
47 |
27 46
|
ffvelrnd |
|- ( ph -> ( E ` ( S ` J ) ) e. ( A (,] B ) ) |
48 |
26 47
|
ffvelrnd |
|- ( ph -> ( L ` ( E ` ( S ` J ) ) ) e. ( A [,] B ) ) |
49 |
24 48
|
sseldd |
|- ( ph -> ( L ` ( E ` ( S ` J ) ) ) e. RR ) |
50 |
22
|
rexrd |
|- ( ph -> A e. RR* ) |
51 |
|
iocssre |
|- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) |
52 |
50 23 51
|
syl2anc |
|- ( ph -> ( A (,] B ) C_ RR ) |
53 |
|
fzofzp1 |
|- ( J e. ( 0 ..^ N ) -> ( J + 1 ) e. ( 0 ... N ) ) |
54 |
16 53
|
syl |
|- ( ph -> ( J + 1 ) e. ( 0 ... N ) ) |
55 |
43 54
|
ffvelrnd |
|- ( ph -> ( S ` ( J + 1 ) ) e. RR ) |
56 |
27 55
|
ffvelrnd |
|- ( ph -> ( E ` ( S ` ( J + 1 ) ) ) e. ( A (,] B ) ) |
57 |
52 56
|
sseldd |
|- ( ph -> ( E ` ( S ` ( J + 1 ) ) ) e. RR ) |
58 |
|
eqid |
|- ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) = ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) |
59 |
55 57
|
resubcld |
|- ( ph -> ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) e. RR ) |
60 |
17 59
|
eqeltrid |
|- ( ph -> U e. RR ) |
61 |
|
eqid |
|- ( ( ( L ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) = ( ( ( L ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) |
62 |
|
eleq1 |
|- ( j = J -> ( j e. ( 0 ..^ N ) <-> J e. ( 0 ..^ N ) ) ) |
63 |
62
|
anbi2d |
|- ( j = J -> ( ( ph /\ j e. ( 0 ..^ N ) ) <-> ( ph /\ J e. ( 0 ..^ N ) ) ) ) |
64 |
|
fveq2 |
|- ( j = J -> ( S ` j ) = ( S ` J ) ) |
65 |
64
|
fveq2d |
|- ( j = J -> ( E ` ( S ` j ) ) = ( E ` ( S ` J ) ) ) |
66 |
65
|
fveq2d |
|- ( j = J -> ( L ` ( E ` ( S ` j ) ) ) = ( L ` ( E ` ( S ` J ) ) ) ) |
67 |
|
oveq1 |
|- ( j = J -> ( j + 1 ) = ( J + 1 ) ) |
68 |
67
|
fveq2d |
|- ( j = J -> ( S ` ( j + 1 ) ) = ( S ` ( J + 1 ) ) ) |
69 |
68
|
fveq2d |
|- ( j = J -> ( E ` ( S ` ( j + 1 ) ) ) = ( E ` ( S ` ( J + 1 ) ) ) ) |
70 |
66 69
|
oveq12d |
|- ( j = J -> ( ( L ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) = ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) |
71 |
64
|
fveq2d |
|- ( j = J -> ( I ` ( S ` j ) ) = ( I ` ( S ` J ) ) ) |
72 |
71
|
fveq2d |
|- ( j = J -> ( Q ` ( I ` ( S ` j ) ) ) = ( Q ` ( I ` ( S ` J ) ) ) ) |
73 |
71
|
oveq1d |
|- ( j = J -> ( ( I ` ( S ` j ) ) + 1 ) = ( ( I ` ( S ` J ) ) + 1 ) ) |
74 |
73
|
fveq2d |
|- ( j = J -> ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) |
75 |
72 74
|
oveq12d |
|- ( j = J -> ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) = ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |
76 |
70 75
|
sseq12d |
|- ( j = J -> ( ( ( L ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) <-> ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) |
77 |
63 76
|
imbi12d |
|- ( j = J -> ( ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( L ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) ) <-> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) ) |
78 |
2
|
oveq2i |
|- ( k x. T ) = ( k x. ( B - A ) ) |
79 |
78
|
oveq2i |
|- ( y + ( k x. T ) ) = ( y + ( k x. ( B - A ) ) ) |
80 |
79
|
eleq1i |
|- ( ( y + ( k x. T ) ) e. ran Q <-> ( y + ( k x. ( B - A ) ) ) e. ran Q ) |
81 |
80
|
rexbii |
|- ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q ) |
82 |
81
|
a1i |
|- ( y e. ( C [,] D ) -> ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q ) ) |
83 |
82
|
rabbiia |
|- { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } |
84 |
83
|
uneq2i |
|- ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) |
85 |
11 84
|
eqtri |
|- H = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) |
86 |
|
id |
|- ( y = x -> y = x ) |
87 |
2
|
eqcomi |
|- ( B - A ) = T |
88 |
87
|
oveq2i |
|- ( k x. ( B - A ) ) = ( k x. T ) |
89 |
88
|
a1i |
|- ( y = x -> ( k x. ( B - A ) ) = ( k x. T ) ) |
90 |
86 89
|
oveq12d |
|- ( y = x -> ( y + ( k x. ( B - A ) ) ) = ( x + ( k x. T ) ) ) |
91 |
90
|
eleq1d |
|- ( y = x -> ( ( y + ( k x. ( B - A ) ) ) e. ran Q <-> ( x + ( k x. T ) ) e. ran Q ) ) |
92 |
91
|
rexbidv |
|- ( y = x -> ( E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q <-> E. k e. ZZ ( x + ( k x. T ) ) e. ran Q ) ) |
93 |
92
|
cbvrabv |
|- { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } = { x e. ( C [,] D ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } |
94 |
93
|
uneq2i |
|- ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) = ( { C , D } u. { x e. ( C [,] D ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) |
95 |
85 94
|
eqtri |
|- H = ( { C , D } u. { x e. ( C [,] D ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) |
96 |
|
eqid |
|- ( ( S ` j ) + if ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) < ( ( Q ` 1 ) - A ) , ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) / 2 ) , ( ( ( Q ` 1 ) - A ) / 2 ) ) ) = ( ( S ` j ) + if ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) < ( ( Q ` 1 ) - A ) , ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) / 2 ) , ( ( ( Q ` 1 ) - A ) / 2 ) ) ) |
97 |
2 1 3 4 8 29 33 10 95 12 13 14 15 96 20
|
fourierdlem79 |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( L ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) ) |
98 |
77 97
|
vtoclg |
|- ( J e. ( 0 ..^ N ) -> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) |
99 |
98
|
anabsi7 |
|- ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |
100 |
16 99
|
mpdan |
|- ( ph -> ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |
101 |
100
|
resabs1d |
|- ( ph -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( F |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) ) |
102 |
101
|
eqcomd |
|- ( ph -> ( F |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) ) |
103 |
1 3 4 2 14 15 20
|
fourierdlem37 |
|- ( ph -> ( I : RR --> ( 0 ..^ M ) /\ ( x e. RR -> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } , RR , < ) e. { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( L ` ( E ` x ) ) } ) ) ) |
104 |
103
|
simpld |
|- ( ph -> I : RR --> ( 0 ..^ M ) ) |
105 |
104 46
|
ffvelrnd |
|- ( ph -> ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) |
106 |
105
|
ancli |
|- ( ph -> ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) |
107 |
|
eleq1 |
|- ( i = ( I ` ( S ` J ) ) -> ( i e. ( 0 ..^ M ) <-> ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) |
108 |
107
|
anbi2d |
|- ( i = ( I ` ( S ` J ) ) -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) ) |
109 |
|
fveq2 |
|- ( i = ( I ` ( S ` J ) ) -> ( Q ` i ) = ( Q ` ( I ` ( S ` J ) ) ) ) |
110 |
|
oveq1 |
|- ( i = ( I ` ( S ` J ) ) -> ( i + 1 ) = ( ( I ` ( S ` J ) ) + 1 ) ) |
111 |
110
|
fveq2d |
|- ( i = ( I ` ( S ` J ) ) -> ( Q ` ( i + 1 ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) |
112 |
109 111
|
oveq12d |
|- ( i = ( I ` ( S ` J ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |
113 |
112
|
reseq2d |
|- ( i = ( I ` ( S ` J ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) |
114 |
112
|
oveq1d |
|- ( i = ( I ` ( S ` J ) ) -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) = ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) |
115 |
113 114
|
eleq12d |
|- ( i = ( I ` ( S ` J ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) <-> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) ) |
116 |
108 115
|
imbi12d |
|- ( i = ( I ` ( S ` J ) ) -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) <-> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) ) ) |
117 |
116 7
|
vtoclg |
|- ( ( I ` ( S ` J ) ) e. ( 0 ..^ M ) -> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) ) |
118 |
105 106 117
|
sylc |
|- ( ph -> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) |
119 |
|
rescncf |
|- ( ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) -cn-> CC ) ) ) |
120 |
100 118 119
|
sylc |
|- ( ph -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) -cn-> CC ) ) |
121 |
102 120
|
eqeltrd |
|- ( ph -> ( F |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) -cn-> CC ) ) |
122 |
18 121
|
eqeltrid |
|- ( ph -> G e. ( ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) -cn-> CC ) ) |
123 |
49 57 58 60 61 122 19
|
cncfshiftioo |
|- ( ph -> R e. ( ( ( ( L ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) -cn-> CC ) ) |
124 |
19
|
a1i |
|- ( ph -> R = ( y e. ( ( ( L ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) |-> ( G ` ( y - U ) ) ) ) |
125 |
17
|
oveq2i |
|- ( ( L ` ( E ` ( S ` J ) ) ) + U ) = ( ( L ` ( E ` ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) |
126 |
125
|
a1i |
|- ( ph -> ( ( L ` ( E ` ( S ` J ) ) ) + U ) = ( ( L ` ( E ` ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) ) |
127 |
69 66
|
oveq12d |
|- ( j = J -> ( ( E ` ( S ` ( j + 1 ) ) ) - ( L ` ( E ` ( S ` j ) ) ) ) = ( ( E ` ( S ` ( J + 1 ) ) ) - ( L ` ( E ` ( S ` J ) ) ) ) ) |
128 |
68 64
|
oveq12d |
|- ( j = J -> ( ( S ` ( j + 1 ) ) - ( S ` j ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) |
129 |
127 128
|
eqeq12d |
|- ( j = J -> ( ( ( E ` ( S ` ( j + 1 ) ) ) - ( L ` ( E ` ( S ` j ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( S ` j ) ) <-> ( ( E ` ( S ` ( J + 1 ) ) ) - ( L ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) |
130 |
63 129
|
imbi12d |
|- ( j = J -> ( ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( j + 1 ) ) ) - ( L ` ( E ` ( S ` j ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( S ` j ) ) ) <-> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( L ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) ) |
131 |
85
|
fveq2i |
|- ( # ` H ) = ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) |
132 |
131
|
oveq1i |
|- ( ( # ` H ) - 1 ) = ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) - 1 ) |
133 |
12 132
|
eqtri |
|- N = ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) - 1 ) |
134 |
|
isoeq5 |
|- ( H = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) -> ( f Isom < , < ( ( 0 ... N ) , H ) <-> f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) ) |
135 |
85 134
|
ax-mp |
|- ( f Isom < , < ( ( 0 ... N ) , H ) <-> f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) |
136 |
135
|
iotabii |
|- ( iota f f Isom < , < ( ( 0 ... N ) , H ) ) = ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) |
137 |
13 136
|
eqtri |
|- S = ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) |
138 |
|
eqid |
|- ( ( S ` j ) + ( B - ( E ` ( S ` j ) ) ) ) = ( ( S ` j ) + ( B - ( E ` ( S ` j ) ) ) ) |
139 |
1 2 3 4 8 9 10 133 137 14 15 138
|
fourierdlem65 |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( j + 1 ) ) ) - ( L ` ( E ` ( S ` j ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( S ` j ) ) ) |
140 |
130 139
|
vtoclg |
|- ( J e. ( 0 ..^ N ) -> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( L ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) |
141 |
140
|
anabsi7 |
|- ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( L ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) |
142 |
16 141
|
mpdan |
|- ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( L ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) |
143 |
57
|
recnd |
|- ( ph -> ( E ` ( S ` ( J + 1 ) ) ) e. CC ) |
144 |
55
|
recnd |
|- ( ph -> ( S ` ( J + 1 ) ) e. CC ) |
145 |
8 29
|
iccssred |
|- ( ph -> ( C [,] D ) C_ RR ) |
146 |
|
ax-resscn |
|- RR C_ CC |
147 |
145 146
|
sstrdi |
|- ( ph -> ( C [,] D ) C_ CC ) |
148 |
10 37 36
|
fourierdlem15 |
|- ( ph -> S : ( 0 ... N ) --> ( C [,] D ) ) |
149 |
148 45
|
ffvelrnd |
|- ( ph -> ( S ` J ) e. ( C [,] D ) ) |
150 |
147 149
|
sseldd |
|- ( ph -> ( S ` J ) e. CC ) |
151 |
144 150
|
subcld |
|- ( ph -> ( ( S ` ( J + 1 ) ) - ( S ` J ) ) e. CC ) |
152 |
49
|
recnd |
|- ( ph -> ( L ` ( E ` ( S ` J ) ) ) e. CC ) |
153 |
143 151 152
|
subsub23d |
|- ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( L ` ( E ` ( S ` J ) ) ) <-> ( ( E ` ( S ` ( J + 1 ) ) ) - ( L ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) |
154 |
142 153
|
mpbird |
|- ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( L ` ( E ` ( S ` J ) ) ) ) |
155 |
154
|
eqcomd |
|- ( ph -> ( L ` ( E ` ( S ` J ) ) ) = ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) |
156 |
155
|
oveq1d |
|- ( ph -> ( ( L ` ( E ` ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) ) |
157 |
143 151
|
subcld |
|- ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) e. CC ) |
158 |
157 144 143
|
addsub12d |
|- ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( ( S ` ( J + 1 ) ) + ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) ) |
159 |
143 151 143
|
sub32d |
|- ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) = ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) |
160 |
143
|
subidd |
|- ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) = 0 ) |
161 |
160
|
oveq1d |
|- ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( 0 - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) |
162 |
|
df-neg |
|- -u ( ( S ` ( J + 1 ) ) - ( S ` J ) ) = ( 0 - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) |
163 |
144 150
|
negsubdi2d |
|- ( ph -> -u ( ( S ` ( J + 1 ) ) - ( S ` J ) ) = ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) |
164 |
162 163
|
eqtr3id |
|- ( ph -> ( 0 - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) |
165 |
159 161 164
|
3eqtrd |
|- ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) = ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) |
166 |
165
|
oveq2d |
|- ( ph -> ( ( S ` ( J + 1 ) ) + ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( ( S ` ( J + 1 ) ) + ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) ) |
167 |
144 150
|
pncan3d |
|- ( ph -> ( ( S ` ( J + 1 ) ) + ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) = ( S ` J ) ) |
168 |
158 166 167
|
3eqtrd |
|- ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( S ` J ) ) |
169 |
126 156 168
|
3eqtrd |
|- ( ph -> ( ( L ` ( E ` ( S ` J ) ) ) + U ) = ( S ` J ) ) |
170 |
17
|
oveq2i |
|- ( ( E ` ( S ` ( J + 1 ) ) ) + U ) = ( ( E ` ( S ` ( J + 1 ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) |
171 |
143 144
|
pncan3d |
|- ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( S ` ( J + 1 ) ) ) |
172 |
170 171
|
syl5eq |
|- ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) + U ) = ( S ` ( J + 1 ) ) ) |
173 |
169 172
|
oveq12d |
|- ( ph -> ( ( ( L ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) = ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) |
174 |
173
|
mpteq1d |
|- ( ph -> ( y e. ( ( ( L ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) |-> ( G ` ( y - U ) ) ) = ( y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) |-> ( G ` ( y - U ) ) ) ) |
175 |
5
|
feqmptd |
|- ( ph -> F = ( y e. RR |-> ( F ` y ) ) ) |
176 |
175
|
reseq1d |
|- ( ph -> ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) = ( ( y e. RR |-> ( F ` y ) ) |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) ) |
177 |
|
ioossre |
|- ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ RR |
178 |
177
|
a1i |
|- ( ph -> ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) C_ RR ) |
179 |
178
|
resmptd |
|- ( ph -> ( ( y e. RR |-> ( F ` y ) ) |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) = ( y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) |-> ( F ` y ) ) ) |
180 |
18
|
fveq1i |
|- ( G ` ( y - U ) ) = ( ( F |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) ` ( y - U ) ) |
181 |
180
|
a1i |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( G ` ( y - U ) ) = ( ( F |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) ` ( y - U ) ) ) |
182 |
49
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( L ` ( E ` ( S ` J ) ) ) e. RR ) |
183 |
182
|
rexrd |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( L ` ( E ` ( S ` J ) ) ) e. RR* ) |
184 |
57
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( E ` ( S ` ( J + 1 ) ) ) e. RR ) |
185 |
184
|
rexrd |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( E ` ( S ` ( J + 1 ) ) ) e. RR* ) |
186 |
178
|
sselda |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> y e. RR ) |
187 |
60
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> U e. RR ) |
188 |
186 187
|
resubcld |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( y - U ) e. RR ) |
189 |
46
|
rexrd |
|- ( ph -> ( S ` J ) e. RR* ) |
190 |
189
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( S ` J ) e. RR* ) |
191 |
55
|
rexrd |
|- ( ph -> ( S ` ( J + 1 ) ) e. RR* ) |
192 |
191
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( S ` ( J + 1 ) ) e. RR* ) |
193 |
|
simpr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) |
194 |
|
ioogtlb |
|- ( ( ( S ` J ) e. RR* /\ ( S ` ( J + 1 ) ) e. RR* /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( S ` J ) < y ) |
195 |
190 192 193 194
|
syl3anc |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( S ` J ) < y ) |
196 |
169
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( L ` ( E ` ( S ` J ) ) ) + U ) = ( S ` J ) ) |
197 |
186
|
recnd |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> y e. CC ) |
198 |
187
|
recnd |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> U e. CC ) |
199 |
197 198
|
npcand |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( y - U ) + U ) = y ) |
200 |
195 196 199
|
3brtr4d |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( L ` ( E ` ( S ` J ) ) ) + U ) < ( ( y - U ) + U ) ) |
201 |
182 188 187
|
ltadd1d |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( L ` ( E ` ( S ` J ) ) ) < ( y - U ) <-> ( ( L ` ( E ` ( S ` J ) ) ) + U ) < ( ( y - U ) + U ) ) ) |
202 |
200 201
|
mpbird |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( L ` ( E ` ( S ` J ) ) ) < ( y - U ) ) |
203 |
|
iooltub |
|- ( ( ( S ` J ) e. RR* /\ ( S ` ( J + 1 ) ) e. RR* /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> y < ( S ` ( J + 1 ) ) ) |
204 |
190 192 193 203
|
syl3anc |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> y < ( S ` ( J + 1 ) ) ) |
205 |
172
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) + U ) = ( S ` ( J + 1 ) ) ) |
206 |
204 199 205
|
3brtr4d |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( y - U ) + U ) < ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) |
207 |
188 184 187
|
ltadd1d |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( y - U ) < ( E ` ( S ` ( J + 1 ) ) ) <-> ( ( y - U ) + U ) < ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) ) |
208 |
206 207
|
mpbird |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( y - U ) < ( E ` ( S ` ( J + 1 ) ) ) ) |
209 |
183 185 188 202 208
|
eliood |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( y - U ) e. ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) |
210 |
|
fvres |
|- ( ( y - U ) e. ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) -> ( ( F |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) ` ( y - U ) ) = ( F ` ( y - U ) ) ) |
211 |
209 210
|
syl |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( F |` ( ( L ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) ` ( y - U ) ) = ( F ` ( y - U ) ) ) |
212 |
17
|
oveq2i |
|- ( y - U ) = ( y - ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) |
213 |
212
|
a1i |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( y - U ) = ( y - ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) ) |
214 |
144
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( S ` ( J + 1 ) ) e. CC ) |
215 |
143
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( E ` ( S ` ( J + 1 ) ) ) e. CC ) |
216 |
197 214 215
|
subsub2d |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( y - ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( y + ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) ) ) |
217 |
215 214
|
subcld |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) e. CC ) |
218 |
23 22
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
219 |
2 218
|
eqeltrid |
|- ( ph -> T e. RR ) |
220 |
219
|
recnd |
|- ( ph -> T e. CC ) |
221 |
220
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> T e. CC ) |
222 |
22 23
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
223 |
25 222
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
224 |
223 2
|
breqtrrdi |
|- ( ph -> 0 < T ) |
225 |
224
|
gt0ne0d |
|- ( ph -> T =/= 0 ) |
226 |
225
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> T =/= 0 ) |
227 |
217 221 226
|
divcan1d |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) x. T ) = ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) ) |
228 |
227
|
eqcomd |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) = ( ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) x. T ) ) |
229 |
228
|
oveq2d |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( y + ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) ) = ( y + ( ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) x. T ) ) ) |
230 |
213 216 229
|
3eqtrd |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( y - U ) = ( y + ( ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) x. T ) ) ) |
231 |
230
|
fveq2d |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( F ` ( y - U ) ) = ( F ` ( y + ( ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) x. T ) ) ) ) |
232 |
5
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> F : RR --> CC ) |
233 |
219
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> T e. RR ) |
234 |
14
|
a1i |
|- ( ph -> E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) ) |
235 |
|
id |
|- ( x = ( S ` ( J + 1 ) ) -> x = ( S ` ( J + 1 ) ) ) |
236 |
|
oveq2 |
|- ( x = ( S ` ( J + 1 ) ) -> ( B - x ) = ( B - ( S ` ( J + 1 ) ) ) ) |
237 |
236
|
oveq1d |
|- ( x = ( S ` ( J + 1 ) ) -> ( ( B - x ) / T ) = ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) |
238 |
237
|
fveq2d |
|- ( x = ( S ` ( J + 1 ) ) -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) ) |
239 |
238
|
oveq1d |
|- ( x = ( S ` ( J + 1 ) ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) |
240 |
235 239
|
oveq12d |
|- ( x = ( S ` ( J + 1 ) ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) ) |
241 |
240
|
adantl |
|- ( ( ph /\ x = ( S ` ( J + 1 ) ) ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) ) |
242 |
23 55
|
resubcld |
|- ( ph -> ( B - ( S ` ( J + 1 ) ) ) e. RR ) |
243 |
242 219 225
|
redivcld |
|- ( ph -> ( ( B - ( S ` ( J + 1 ) ) ) / T ) e. RR ) |
244 |
243
|
flcld |
|- ( ph -> ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) e. ZZ ) |
245 |
244
|
zred |
|- ( ph -> ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) e. RR ) |
246 |
245 219
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) e. RR ) |
247 |
55 246
|
readdcld |
|- ( ph -> ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) e. RR ) |
248 |
234 241 55 247
|
fvmptd |
|- ( ph -> ( E ` ( S ` ( J + 1 ) ) ) = ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) ) |
249 |
248
|
oveq1d |
|- ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) = ( ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) - ( S ` ( J + 1 ) ) ) ) |
250 |
245
|
recnd |
|- ( ph -> ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) e. CC ) |
251 |
250 220
|
mulcld |
|- ( ph -> ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) e. CC ) |
252 |
144 251
|
pncan2d |
|- ( ph -> ( ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) - ( S ` ( J + 1 ) ) ) = ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) |
253 |
249 252
|
eqtrd |
|- ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) = ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) |
254 |
253
|
oveq1d |
|- ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) = ( ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) / T ) ) |
255 |
250 220 225
|
divcan4d |
|- ( ph -> ( ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) / T ) = ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) ) |
256 |
254 255
|
eqtrd |
|- ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) = ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) ) |
257 |
256 244
|
eqeltrd |
|- ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) e. ZZ ) |
258 |
257
|
adantr |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) e. ZZ ) |
259 |
6
|
adantlr |
|- ( ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
260 |
232 233 258 186 259
|
fperiodmul |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( F ` ( y + ( ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) x. T ) ) ) = ( F ` y ) ) |
261 |
231 260
|
eqtrd |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( F ` ( y - U ) ) = ( F ` y ) ) |
262 |
181 211 261
|
3eqtrrd |
|- ( ( ph /\ y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) -> ( F ` y ) = ( G ` ( y - U ) ) ) |
263 |
262
|
mpteq2dva |
|- ( ph -> ( y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) |-> ( F ` y ) ) = ( y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) |-> ( G ` ( y - U ) ) ) ) |
264 |
176 179 263
|
3eqtrrd |
|- ( ph -> ( y e. ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) |-> ( G ` ( y - U ) ) ) = ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) ) |
265 |
124 174 264
|
3eqtrd |
|- ( ph -> R = ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) ) |
266 |
173
|
oveq1d |
|- ( ph -> ( ( ( ( L ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) -cn-> CC ) = ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) -cn-> CC ) ) |
267 |
123 265 266
|
3eltr3d |
|- ( ph -> ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) e. ( ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) -cn-> CC ) ) |