| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem91.p | 
							 |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem91.t | 
							 |-  T = ( B - A )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem91.m | 
							 |-  ( ph -> M e. NN )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem91.q | 
							 |-  ( ph -> Q e. ( P ` M ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem91.f | 
							 |-  ( ph -> F : RR --> CC )  | 
						
						
							| 6 | 
							
								
							 | 
							fourierdlem91.6 | 
							 |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fourierdlem91.fcn | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fourierdlem91.l | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fourierdlem91.c | 
							 |-  ( ph -> C e. RR )  | 
						
						
							| 10 | 
							
								
							 | 
							fourierdlem91.d | 
							 |-  ( ph -> D e. ( C (,) +oo ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fourierdlem91.o | 
							 |-  O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = C /\ ( p ` m ) = D ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
						
							| 12 | 
							
								
							 | 
							fourierdlem91.h | 
							 |-  H = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) | 
						
						
							| 13 | 
							
								
							 | 
							fourierdlem91.n | 
							 |-  N = ( ( # ` H ) - 1 )  | 
						
						
							| 14 | 
							
								
							 | 
							fourierdlem91.s | 
							 |-  S = ( iota f f Isom < , < ( ( 0 ... N ) , H ) )  | 
						
						
							| 15 | 
							
								
							 | 
							fourierdlem91.e | 
							 |-  E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							fourierdlem91.J | 
							 |-  Z = ( y e. ( A (,] B ) |-> if ( y = B , A , y ) )  | 
						
						
							| 17 | 
							
								
							 | 
							fourierdlem91.17 | 
							 |-  ( ph -> J e. ( 0 ..^ N ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fourierdlem91.u | 
							 |-  U = ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fourierdlem91.i | 
							 |-  I = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( Z ` ( E ` x ) ) } , RR , < ) ) | 
						
						
							| 20 | 
							
								
							 | 
							fourierdlem91.w | 
							 |-  W = ( i e. ( 0 ..^ M ) |-> L )  | 
						
						
							| 21 | 
							
								1
							 | 
							fourierdlem2 | 
							 |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 22 | 
							
								3 21
							 | 
							syl | 
							 |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 23 | 
							
								4 22
							 | 
							mpbid | 
							 |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							simpld | 
							 |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							elmapi | 
							 |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( ph -> Q : ( 0 ... M ) --> RR )  | 
						
						
							| 27 | 
							
								
							 | 
							fzossfz | 
							 |-  ( 0 ..^ M ) C_ ( 0 ... M )  | 
						
						
							| 28 | 
							
								1 3 4 2 15 16 19
							 | 
							fourierdlem37 | 
							 |-  ( ph -> ( I : RR --> ( 0 ..^ M ) /\ ( x e. RR -> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( Z ` ( E ` x ) ) } , RR , < ) e. { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( Z ` ( E ` x ) ) } ) ) ) | 
						
						
							| 29 | 
							
								28
							 | 
							simpld | 
							 |-  ( ph -> I : RR --> ( 0 ..^ M ) )  | 
						
						
							| 30 | 
							
								
							 | 
							elioore | 
							 |-  ( D e. ( C (,) +oo ) -> D e. RR )  | 
						
						
							| 31 | 
							
								10 30
							 | 
							syl | 
							 |-  ( ph -> D e. RR )  | 
						
						
							| 32 | 
							
								
							 | 
							elioo4g | 
							 |-  ( D e. ( C (,) +oo ) <-> ( ( C e. RR* /\ +oo e. RR* /\ D e. RR ) /\ ( C < D /\ D < +oo ) ) )  | 
						
						
							| 33 | 
							
								10 32
							 | 
							sylib | 
							 |-  ( ph -> ( ( C e. RR* /\ +oo e. RR* /\ D e. RR ) /\ ( C < D /\ D < +oo ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							simprd | 
							 |-  ( ph -> ( C < D /\ D < +oo ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							simpld | 
							 |-  ( ph -> C < D )  | 
						
						
							| 36 | 
							
								
							 | 
							oveq1 | 
							 |-  ( y = x -> ( y + ( k x. T ) ) = ( x + ( k x. T ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							eleq1d | 
							 |-  ( y = x -> ( ( y + ( k x. T ) ) e. ran Q <-> ( x + ( k x. T ) ) e. ran Q ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							rexbidv | 
							 |-  ( y = x -> ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( x + ( k x. T ) ) e. ran Q ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							cbvrabv | 
							 |-  { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { x e. ( C [,] D ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } | 
						
						
							| 40 | 
							
								39
							 | 
							uneq2i | 
							 |-  ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { C , D } u. { x e. ( C [,] D ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) | 
						
						
							| 41 | 
							
								12
							 | 
							fveq2i | 
							 |-  ( # ` H ) = ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) | 
						
						
							| 42 | 
							
								41
							 | 
							oveq1i | 
							 |-  ( ( # ` H ) - 1 ) = ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) | 
						
						
							| 43 | 
							
								13 42
							 | 
							eqtri | 
							 |-  N = ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) | 
						
						
							| 44 | 
							
								
							 | 
							isoeq5 | 
							 |-  ( H = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) -> ( f Isom < , < ( ( 0 ... N ) , H ) <-> f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
						
							| 45 | 
							
								12 44
							 | 
							ax-mp | 
							 |-  ( f Isom < , < ( ( 0 ... N ) , H ) <-> f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
						
							| 46 | 
							
								45
							 | 
							iotabii | 
							 |-  ( iota f f Isom < , < ( ( 0 ... N ) , H ) ) = ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
						
							| 47 | 
							
								14 46
							 | 
							eqtri | 
							 |-  S = ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) | 
						
						
							| 48 | 
							
								2 1 3 4 9 31 35 11 40 43 47
							 | 
							fourierdlem54 | 
							 |-  ( ph -> ( ( N e. NN /\ S e. ( O ` N ) ) /\ S Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
						
							| 49 | 
							
								48
							 | 
							simpld | 
							 |-  ( ph -> ( N e. NN /\ S e. ( O ` N ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							simprd | 
							 |-  ( ph -> S e. ( O ` N ) )  | 
						
						
							| 51 | 
							
								49
							 | 
							simpld | 
							 |-  ( ph -> N e. NN )  | 
						
						
							| 52 | 
							
								11
							 | 
							fourierdlem2 | 
							 |-  ( N e. NN -> ( S e. ( O ` N ) <-> ( S e. ( RR ^m ( 0 ... N ) ) /\ ( ( ( S ` 0 ) = C /\ ( S ` N ) = D ) /\ A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							syl | 
							 |-  ( ph -> ( S e. ( O ` N ) <-> ( S e. ( RR ^m ( 0 ... N ) ) /\ ( ( ( S ` 0 ) = C /\ ( S ` N ) = D ) /\ A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 54 | 
							
								50 53
							 | 
							mpbid | 
							 |-  ( ph -> ( S e. ( RR ^m ( 0 ... N ) ) /\ ( ( ( S ` 0 ) = C /\ ( S ` N ) = D ) /\ A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							simpld | 
							 |-  ( ph -> S e. ( RR ^m ( 0 ... N ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							elmapi | 
							 |-  ( S e. ( RR ^m ( 0 ... N ) ) -> S : ( 0 ... N ) --> RR )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							syl | 
							 |-  ( ph -> S : ( 0 ... N ) --> RR )  | 
						
						
							| 58 | 
							
								
							 | 
							elfzofz | 
							 |-  ( J e. ( 0 ..^ N ) -> J e. ( 0 ... N ) )  | 
						
						
							| 59 | 
							
								17 58
							 | 
							syl | 
							 |-  ( ph -> J e. ( 0 ... N ) )  | 
						
						
							| 60 | 
							
								57 59
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( S ` J ) e. RR )  | 
						
						
							| 61 | 
							
								29 60
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( I ` ( S ` J ) ) e. ( 0 ..^ M ) )  | 
						
						
							| 62 | 
							
								27 61
							 | 
							sselid | 
							 |-  ( ph -> ( I ` ( S ` J ) ) e. ( 0 ... M ) )  | 
						
						
							| 63 | 
							
								26 62
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( Q ` ( I ` ( S ` J ) ) ) e. RR )  | 
						
						
							| 64 | 
							
								63
							 | 
							rexrd | 
							 |-  ( ph -> ( Q ` ( I ` ( S ` J ) ) ) e. RR* )  | 
						
						
							| 65 | 
							
								64
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( Q ` ( I ` ( S ` J ) ) ) e. RR* )  | 
						
						
							| 66 | 
							
								
							 | 
							fzofzp1 | 
							 |-  ( ( I ` ( S ` J ) ) e. ( 0 ..^ M ) -> ( ( I ` ( S ` J ) ) + 1 ) e. ( 0 ... M ) )  | 
						
						
							| 67 | 
							
								61 66
							 | 
							syl | 
							 |-  ( ph -> ( ( I ` ( S ` J ) ) + 1 ) e. ( 0 ... M ) )  | 
						
						
							| 68 | 
							
								26 67
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) e. RR )  | 
						
						
							| 69 | 
							
								68
							 | 
							rexrd | 
							 |-  ( ph -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) e. RR* )  | 
						
						
							| 70 | 
							
								69
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) e. RR* )  | 
						
						
							| 71 | 
							
								1 3 4
							 | 
							fourierdlem11 | 
							 |-  ( ph -> ( A e. RR /\ B e. RR /\ A < B ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							simp1d | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 73 | 
							
								72
							 | 
							rexrd | 
							 |-  ( ph -> A e. RR* )  | 
						
						
							| 74 | 
							
								71
							 | 
							simp2d | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 75 | 
							
								
							 | 
							iocssre | 
							 |-  ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR )  | 
						
						
							| 76 | 
							
								73 74 75
							 | 
							syl2anc | 
							 |-  ( ph -> ( A (,] B ) C_ RR )  | 
						
						
							| 77 | 
							
								71
							 | 
							simp3d | 
							 |-  ( ph -> A < B )  | 
						
						
							| 78 | 
							
								72 74 77 2 15
							 | 
							fourierdlem4 | 
							 |-  ( ph -> E : RR --> ( A (,] B ) )  | 
						
						
							| 79 | 
							
								
							 | 
							fzofzp1 | 
							 |-  ( J e. ( 0 ..^ N ) -> ( J + 1 ) e. ( 0 ... N ) )  | 
						
						
							| 80 | 
							
								17 79
							 | 
							syl | 
							 |-  ( ph -> ( J + 1 ) e. ( 0 ... N ) )  | 
						
						
							| 81 | 
							
								57 80
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( S ` ( J + 1 ) ) e. RR )  | 
						
						
							| 82 | 
							
								78 81
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( E ` ( S ` ( J + 1 ) ) ) e. ( A (,] B ) )  | 
						
						
							| 83 | 
							
								76 82
							 | 
							sseldd | 
							 |-  ( ph -> ( E ` ( S ` ( J + 1 ) ) ) e. RR )  | 
						
						
							| 84 | 
							
								83
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( E ` ( S ` ( J + 1 ) ) ) e. RR )  | 
						
						
							| 85 | 
							
								72 74
							 | 
							iccssred | 
							 |-  ( ph -> ( A [,] B ) C_ RR )  | 
						
						
							| 86 | 
							
								72 74 77 16
							 | 
							fourierdlem17 | 
							 |-  ( ph -> Z : ( A (,] B ) --> ( A [,] B ) )  | 
						
						
							| 87 | 
							
								78 60
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( E ` ( S ` J ) ) e. ( A (,] B ) )  | 
						
						
							| 88 | 
							
								86 87
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( Z ` ( E ` ( S ` J ) ) ) e. ( A [,] B ) )  | 
						
						
							| 89 | 
							
								85 88
							 | 
							sseldd | 
							 |-  ( ph -> ( Z ` ( E ` ( S ` J ) ) ) e. RR )  | 
						
						
							| 90 | 
							
								54
							 | 
							simprrd | 
							 |-  ( ph -> A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) )  | 
						
						
							| 91 | 
							
								
							 | 
							fveq2 | 
							 |-  ( i = J -> ( S ` i ) = ( S ` J ) )  | 
						
						
							| 92 | 
							
								
							 | 
							oveq1 | 
							 |-  ( i = J -> ( i + 1 ) = ( J + 1 ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							fveq2d | 
							 |-  ( i = J -> ( S ` ( i + 1 ) ) = ( S ` ( J + 1 ) ) )  | 
						
						
							| 94 | 
							
								91 93
							 | 
							breq12d | 
							 |-  ( i = J -> ( ( S ` i ) < ( S ` ( i + 1 ) ) <-> ( S ` J ) < ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							rspccva | 
							 |-  ( ( A. i e. ( 0 ..^ N ) ( S ` i ) < ( S ` ( i + 1 ) ) /\ J e. ( 0 ..^ N ) ) -> ( S ` J ) < ( S ` ( J + 1 ) ) )  | 
						
						
							| 96 | 
							
								90 17 95
							 | 
							syl2anc | 
							 |-  ( ph -> ( S ` J ) < ( S ` ( J + 1 ) ) )  | 
						
						
							| 97 | 
							
								60 81
							 | 
							posdifd | 
							 |-  ( ph -> ( ( S ` J ) < ( S ` ( J + 1 ) ) <-> 0 < ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) )  | 
						
						
							| 98 | 
							
								96 97
							 | 
							mpbid | 
							 |-  ( ph -> 0 < ( ( S ` ( J + 1 ) ) - ( S ` J ) ) )  | 
						
						
							| 99 | 
							
								
							 | 
							eleq1 | 
							 |-  ( j = J -> ( j e. ( 0 ..^ N ) <-> J e. ( 0 ..^ N ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							anbi2d | 
							 |-  ( j = J -> ( ( ph /\ j e. ( 0 ..^ N ) ) <-> ( ph /\ J e. ( 0 ..^ N ) ) ) )  | 
						
						
							| 101 | 
							
								
							 | 
							oveq1 | 
							 |-  ( j = J -> ( j + 1 ) = ( J + 1 ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							fveq2d | 
							 |-  ( j = J -> ( S ` ( j + 1 ) ) = ( S ` ( J + 1 ) ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							fveq2d | 
							 |-  ( j = J -> ( E ` ( S ` ( j + 1 ) ) ) = ( E ` ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 104 | 
							
								
							 | 
							fveq2 | 
							 |-  ( j = J -> ( S ` j ) = ( S ` J ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							fveq2d | 
							 |-  ( j = J -> ( E ` ( S ` j ) ) = ( E ` ( S ` J ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							fveq2d | 
							 |-  ( j = J -> ( Z ` ( E ` ( S ` j ) ) ) = ( Z ` ( E ` ( S ` J ) ) ) )  | 
						
						
							| 107 | 
							
								103 106
							 | 
							oveq12d | 
							 |-  ( j = J -> ( ( E ` ( S ` ( j + 1 ) ) ) - ( Z ` ( E ` ( S ` j ) ) ) ) = ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) )  | 
						
						
							| 108 | 
							
								102 104
							 | 
							oveq12d | 
							 |-  ( j = J -> ( ( S ` ( j + 1 ) ) - ( S ` j ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) )  | 
						
						
							| 109 | 
							
								107 108
							 | 
							eqeq12d | 
							 |-  ( j = J -> ( ( ( E ` ( S ` ( j + 1 ) ) ) - ( Z ` ( E ` ( S ` j ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( S ` j ) ) <-> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) )  | 
						
						
							| 110 | 
							
								100 109
							 | 
							imbi12d | 
							 |-  ( j = J -> ( ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( j + 1 ) ) ) - ( Z ` ( E ` ( S ` j ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( S ` j ) ) ) <-> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) ) )  | 
						
						
							| 111 | 
							
								2
							 | 
							oveq2i | 
							 |-  ( k x. T ) = ( k x. ( B - A ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							oveq2i | 
							 |-  ( y + ( k x. T ) ) = ( y + ( k x. ( B - A ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							eleq1i | 
							 |-  ( ( y + ( k x. T ) ) e. ran Q <-> ( y + ( k x. ( B - A ) ) ) e. ran Q )  | 
						
						
							| 114 | 
							
								113
							 | 
							rexbii | 
							 |-  ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q )  | 
						
						
							| 115 | 
							
								114
							 | 
							rgenw | 
							 |-  A. y e. ( C [,] D ) ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q )  | 
						
						
							| 116 | 
							
								
							 | 
							rabbi | 
							 |-  ( A. y e. ( C [,] D ) ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q ) <-> { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) | 
						
						
							| 117 | 
							
								115 116
							 | 
							mpbi | 
							 |-  { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } | 
						
						
							| 118 | 
							
								117
							 | 
							uneq2i | 
							 |-  ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) | 
						
						
							| 119 | 
							
								118
							 | 
							fveq2i | 
							 |-  ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) = ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) | 
						
						
							| 120 | 
							
								119
							 | 
							oveq1i | 
							 |-  ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) = ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) - 1 ) | 
						
						
							| 121 | 
							
								43 120
							 | 
							eqtri | 
							 |-  N = ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) - 1 ) | 
						
						
							| 122 | 
							
								
							 | 
							isoeq5 | 
							 |-  ( ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) -> ( f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) ) | 
						
						
							| 123 | 
							
								118 122
							 | 
							ax-mp | 
							 |-  ( f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) | 
						
						
							| 124 | 
							
								123
							 | 
							iotabii | 
							 |-  ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) | 
						
						
							| 125 | 
							
								47 124
							 | 
							eqtri | 
							 |-  S = ( iota f f Isom < , < ( ( 0 ... N ) , ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. ( B - A ) ) ) e. ran Q } ) ) ) | 
						
						
							| 126 | 
							
								
							 | 
							eqid | 
							 |-  ( ( S ` j ) + ( B - ( E ` ( S ` j ) ) ) ) = ( ( S ` j ) + ( B - ( E ` ( S ` j ) ) ) )  | 
						
						
							| 127 | 
							
								1 2 3 4 9 10 11 121 125 15 16 126
							 | 
							fourierdlem65 | 
							 |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( j + 1 ) ) ) - ( Z ` ( E ` ( S ` j ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( S ` j ) ) )  | 
						
						
							| 128 | 
							
								110 127
							 | 
							vtoclg | 
							 |-  ( J e. ( 0 ..^ N ) -> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) )  | 
						
						
							| 129 | 
							
								128
							 | 
							anabsi7 | 
							 |-  ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) )  | 
						
						
							| 130 | 
							
								17 129
							 | 
							mpdan | 
							 |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) )  | 
						
						
							| 131 | 
							
								98 130
							 | 
							breqtrrd | 
							 |-  ( ph -> 0 < ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) )  | 
						
						
							| 132 | 
							
								89 83
							 | 
							posdifd | 
							 |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) < ( E ` ( S ` ( J + 1 ) ) ) <-> 0 < ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) ) )  | 
						
						
							| 133 | 
							
								131 132
							 | 
							mpbird | 
							 |-  ( ph -> ( Z ` ( E ` ( S ` J ) ) ) < ( E ` ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 134 | 
							
								106 103
							 | 
							oveq12d | 
							 |-  ( j = J -> ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) = ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 135 | 
							
								104
							 | 
							fveq2d | 
							 |-  ( j = J -> ( I ` ( S ` j ) ) = ( I ` ( S ` J ) ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							fveq2d | 
							 |-  ( j = J -> ( Q ` ( I ` ( S ` j ) ) ) = ( Q ` ( I ` ( S ` J ) ) ) )  | 
						
						
							| 137 | 
							
								135
							 | 
							oveq1d | 
							 |-  ( j = J -> ( ( I ` ( S ` j ) ) + 1 ) = ( ( I ` ( S ` J ) ) + 1 ) )  | 
						
						
							| 138 | 
							
								137
							 | 
							fveq2d | 
							 |-  ( j = J -> ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) )  | 
						
						
							| 139 | 
							
								136 138
							 | 
							oveq12d | 
							 |-  ( j = J -> ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) = ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) )  | 
						
						
							| 140 | 
							
								134 139
							 | 
							sseq12d | 
							 |-  ( j = J -> ( ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) <-> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) )  | 
						
						
							| 141 | 
							
								100 140
							 | 
							imbi12d | 
							 |-  ( j = J -> ( ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) ) <-> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) )  | 
						
						
							| 142 | 
							
								12 40
							 | 
							eqtri | 
							 |-  H = ( { C , D } u. { x e. ( C [,] D ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) | 
						
						
							| 143 | 
							
								
							 | 
							eqid | 
							 |-  ( ( S ` j ) + if ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) < ( ( Q ` 1 ) - A ) , ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) / 2 ) , ( ( ( Q ` 1 ) - A ) / 2 ) ) ) = ( ( S ` j ) + if ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) < ( ( Q ` 1 ) - A ) , ( ( ( S ` ( j + 1 ) ) - ( S ` j ) ) / 2 ) , ( ( ( Q ` 1 ) - A ) / 2 ) ) )  | 
						
						
							| 144 | 
							
								2 1 3 4 9 31 35 11 142 13 14 15 16 143 19
							 | 
							fourierdlem79 | 
							 |-  ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( ( Z ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` j ) ) ) (,) ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) ) )  | 
						
						
							| 145 | 
							
								141 144
							 | 
							vtoclg | 
							 |-  ( J e. ( 0 ..^ N ) -> ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							anabsi7 | 
							 |-  ( ( ph /\ J e. ( 0 ..^ N ) ) -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) )  | 
						
						
							| 147 | 
							
								17 146
							 | 
							mpdan | 
							 |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) )  | 
						
						
							| 148 | 
							
								63 68 89 83 133 147
							 | 
							fourierdlem10 | 
							 |-  ( ph -> ( ( Q ` ( I ` ( S ` J ) ) ) <_ ( Z ` ( E ` ( S ` J ) ) ) /\ ( E ` ( S ` ( J + 1 ) ) ) <_ ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) )  | 
						
						
							| 149 | 
							
								148
							 | 
							simpld | 
							 |-  ( ph -> ( Q ` ( I ` ( S ` J ) ) ) <_ ( Z ` ( E ` ( S ` J ) ) ) )  | 
						
						
							| 150 | 
							
								63 89 83 149 133
							 | 
							lelttrd | 
							 |-  ( ph -> ( Q ` ( I ` ( S ` J ) ) ) < ( E ` ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 151 | 
							
								150
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( Q ` ( I ` ( S ` J ) ) ) < ( E ` ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 152 | 
							
								68
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) e. RR )  | 
						
						
							| 153 | 
							
								148
							 | 
							simprd | 
							 |-  ( ph -> ( E ` ( S ` ( J + 1 ) ) ) <_ ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) )  | 
						
						
							| 154 | 
							
								153
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( E ` ( S ` ( J + 1 ) ) ) <_ ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) )  | 
						
						
							| 155 | 
							
								
							 | 
							neqne | 
							 |-  ( -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) -> ( E ` ( S ` ( J + 1 ) ) ) =/= ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) )  | 
						
						
							| 156 | 
							
								155
							 | 
							necomd | 
							 |-  ( -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) =/= ( E ` ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 157 | 
							
								156
							 | 
							adantl | 
							 |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) =/= ( E ` ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 158 | 
							
								84 152 154 157
							 | 
							leneltd | 
							 |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( E ` ( S ` ( J + 1 ) ) ) < ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) )  | 
						
						
							| 159 | 
							
								65 70 84 151 158
							 | 
							eliood | 
							 |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( E ` ( S ` ( J + 1 ) ) ) e. ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) )  | 
						
						
							| 160 | 
							
								
							 | 
							fvres | 
							 |-  ( ( E ` ( S ` ( J + 1 ) ) ) e. ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) = ( F ` ( E ` ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 161 | 
							
								159 160
							 | 
							syl | 
							 |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) = ( F ` ( E ` ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 162 | 
							
								161
							 | 
							eqcomd | 
							 |-  ( ( ph /\ -. ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -> ( F ` ( E ` ( S ` ( J + 1 ) ) ) ) = ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 163 | 
							
								162
							 | 
							ifeq2da | 
							 |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( F ` ( E ` ( S ` ( J + 1 ) ) ) ) ) = if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) )  | 
						
						
							| 164 | 
							
								
							 | 
							fdm | 
							 |-  ( F : RR --> CC -> dom F = RR )  | 
						
						
							| 165 | 
							
								5 164
							 | 
							syl | 
							 |-  ( ph -> dom F = RR )  | 
						
						
							| 166 | 
							
								165
							 | 
							feq2d | 
							 |-  ( ph -> ( F : dom F --> CC <-> F : RR --> CC ) )  | 
						
						
							| 167 | 
							
								5 166
							 | 
							mpbird | 
							 |-  ( ph -> F : dom F --> CC )  | 
						
						
							| 168 | 
							
								
							 | 
							ioosscn | 
							 |-  ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ CC  | 
						
						
							| 169 | 
							
								168
							 | 
							a1i | 
							 |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ CC )  | 
						
						
							| 170 | 
							
								
							 | 
							ioossre | 
							 |-  ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ RR  | 
						
						
							| 171 | 
							
								170 165
							 | 
							sseqtrrid | 
							 |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) C_ dom F )  | 
						
						
							| 172 | 
							
								81 83
							 | 
							resubcld | 
							 |-  ( ph -> ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) e. RR )  | 
						
						
							| 173 | 
							
								18 172
							 | 
							eqeltrid | 
							 |-  ( ph -> U e. RR )  | 
						
						
							| 174 | 
							
								173
							 | 
							recnd | 
							 |-  ( ph -> U e. CC )  | 
						
						
							| 175 | 
							
								
							 | 
							eqid | 
							 |-  { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } = { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } | 
						
						
							| 176 | 
							
								89 83 173
							 | 
							iooshift | 
							 |-  ( ph -> ( ( ( Z ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) = { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) | 
						
						
							| 177 | 
							
								
							 | 
							ioossre | 
							 |-  ( ( ( Z ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) C_ RR  | 
						
						
							| 178 | 
							
								177 165
							 | 
							sseqtrrid | 
							 |-  ( ph -> ( ( ( Z ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) C_ dom F )  | 
						
						
							| 179 | 
							
								176 178
							 | 
							eqsstrrd | 
							 |-  ( ph -> { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } C_ dom F ) | 
						
						
							| 180 | 
							
								
							 | 
							elioore | 
							 |-  ( y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) -> y e. RR )  | 
						
						
							| 181 | 
							
								74 72
							 | 
							resubcld | 
							 |-  ( ph -> ( B - A ) e. RR )  | 
						
						
							| 182 | 
							
								2 181
							 | 
							eqeltrid | 
							 |-  ( ph -> T e. RR )  | 
						
						
							| 183 | 
							
								182
							 | 
							recnd | 
							 |-  ( ph -> T e. CC )  | 
						
						
							| 184 | 
							
								72 74
							 | 
							posdifd | 
							 |-  ( ph -> ( A < B <-> 0 < ( B - A ) ) )  | 
						
						
							| 185 | 
							
								77 184
							 | 
							mpbid | 
							 |-  ( ph -> 0 < ( B - A ) )  | 
						
						
							| 186 | 
							
								185 2
							 | 
							breqtrrdi | 
							 |-  ( ph -> 0 < T )  | 
						
						
							| 187 | 
							
								186
							 | 
							gt0ne0d | 
							 |-  ( ph -> T =/= 0 )  | 
						
						
							| 188 | 
							
								174 183 187
							 | 
							divcan1d | 
							 |-  ( ph -> ( ( U / T ) x. T ) = U )  | 
						
						
							| 189 | 
							
								188
							 | 
							eqcomd | 
							 |-  ( ph -> U = ( ( U / T ) x. T ) )  | 
						
						
							| 190 | 
							
								189
							 | 
							oveq2d | 
							 |-  ( ph -> ( y + U ) = ( y + ( ( U / T ) x. T ) ) )  | 
						
						
							| 191 | 
							
								190
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. RR ) -> ( y + U ) = ( y + ( ( U / T ) x. T ) ) )  | 
						
						
							| 192 | 
							
								191
							 | 
							fveq2d | 
							 |-  ( ( ph /\ y e. RR ) -> ( F ` ( y + U ) ) = ( F ` ( y + ( ( U / T ) x. T ) ) ) )  | 
						
						
							| 193 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. RR ) -> F : RR --> CC )  | 
						
						
							| 194 | 
							
								182
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. RR ) -> T e. RR )  | 
						
						
							| 195 | 
							
								83
							 | 
							recnd | 
							 |-  ( ph -> ( E ` ( S ` ( J + 1 ) ) ) e. CC )  | 
						
						
							| 196 | 
							
								81
							 | 
							recnd | 
							 |-  ( ph -> ( S ` ( J + 1 ) ) e. CC )  | 
						
						
							| 197 | 
							
								195 196
							 | 
							negsubdi2d | 
							 |-  ( ph -> -u ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) = ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 198 | 
							
								197
							 | 
							eqcomd | 
							 |-  ( ph -> ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) = -u ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 199 | 
							
								198
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) / T ) = ( -u ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) )  | 
						
						
							| 200 | 
							
								18
							 | 
							oveq1i | 
							 |-  ( U / T ) = ( ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) / T )  | 
						
						
							| 201 | 
							
								200
							 | 
							a1i | 
							 |-  ( ph -> ( U / T ) = ( ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) / T ) )  | 
						
						
							| 202 | 
							
								15
							 | 
							a1i | 
							 |-  ( ph -> E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) )  | 
						
						
							| 203 | 
							
								
							 | 
							id | 
							 |-  ( x = ( S ` ( J + 1 ) ) -> x = ( S ` ( J + 1 ) ) )  | 
						
						
							| 204 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = ( S ` ( J + 1 ) ) -> ( B - x ) = ( B - ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 205 | 
							
								204
							 | 
							oveq1d | 
							 |-  ( x = ( S ` ( J + 1 ) ) -> ( ( B - x ) / T ) = ( ( B - ( S ` ( J + 1 ) ) ) / T ) )  | 
						
						
							| 206 | 
							
								205
							 | 
							fveq2d | 
							 |-  ( x = ( S ` ( J + 1 ) ) -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) )  | 
						
						
							| 207 | 
							
								206
							 | 
							oveq1d | 
							 |-  ( x = ( S ` ( J + 1 ) ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) )  | 
						
						
							| 208 | 
							
								203 207
							 | 
							oveq12d | 
							 |-  ( x = ( S ` ( J + 1 ) ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) )  | 
						
						
							| 209 | 
							
								208
							 | 
							adantl | 
							 |-  ( ( ph /\ x = ( S ` ( J + 1 ) ) ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) )  | 
						
						
							| 210 | 
							
								74 81
							 | 
							resubcld | 
							 |-  ( ph -> ( B - ( S ` ( J + 1 ) ) ) e. RR )  | 
						
						
							| 211 | 
							
								210 182 187
							 | 
							redivcld | 
							 |-  ( ph -> ( ( B - ( S ` ( J + 1 ) ) ) / T ) e. RR )  | 
						
						
							| 212 | 
							
								211
							 | 
							flcld | 
							 |-  ( ph -> ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) e. ZZ )  | 
						
						
							| 213 | 
							
								212
							 | 
							zred | 
							 |-  ( ph -> ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) e. RR )  | 
						
						
							| 214 | 
							
								213 182
							 | 
							remulcld | 
							 |-  ( ph -> ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) e. RR )  | 
						
						
							| 215 | 
							
								81 214
							 | 
							readdcld | 
							 |-  ( ph -> ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) e. RR )  | 
						
						
							| 216 | 
							
								202 209 81 215
							 | 
							fvmptd | 
							 |-  ( ph -> ( E ` ( S ` ( J + 1 ) ) ) = ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) )  | 
						
						
							| 217 | 
							
								216
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) = ( ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) - ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 218 | 
							
								212
							 | 
							zcnd | 
							 |-  ( ph -> ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) e. CC )  | 
						
						
							| 219 | 
							
								218 183
							 | 
							mulcld | 
							 |-  ( ph -> ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) e. CC )  | 
						
						
							| 220 | 
							
								196 219
							 | 
							pncan2d | 
							 |-  ( ph -> ( ( ( S ` ( J + 1 ) ) + ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) ) - ( S ` ( J + 1 ) ) ) = ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) )  | 
						
						
							| 221 | 
							
								217 220
							 | 
							eqtrd | 
							 |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) = ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) )  | 
						
						
							| 222 | 
							
								221 219
							 | 
							eqeltrd | 
							 |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) e. CC )  | 
						
						
							| 223 | 
							
								222 183 187
							 | 
							divnegd | 
							 |-  ( ph -> -u ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) = ( -u ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) )  | 
						
						
							| 224 | 
							
								199 201 223
							 | 
							3eqtr4d | 
							 |-  ( ph -> ( U / T ) = -u ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) )  | 
						
						
							| 225 | 
							
								221
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) = ( ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) / T ) )  | 
						
						
							| 226 | 
							
								218 183 187
							 | 
							divcan4d | 
							 |-  ( ph -> ( ( ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) x. T ) / T ) = ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) )  | 
						
						
							| 227 | 
							
								225 226
							 | 
							eqtrd | 
							 |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) = ( |_ ` ( ( B - ( S ` ( J + 1 ) ) ) / T ) ) )  | 
						
						
							| 228 | 
							
								227 212
							 | 
							eqeltrd | 
							 |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) e. ZZ )  | 
						
						
							| 229 | 
							
								228
							 | 
							znegcld | 
							 |-  ( ph -> -u ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( S ` ( J + 1 ) ) ) / T ) e. ZZ )  | 
						
						
							| 230 | 
							
								224 229
							 | 
							eqeltrd | 
							 |-  ( ph -> ( U / T ) e. ZZ )  | 
						
						
							| 231 | 
							
								230
							 | 
							adantr | 
							 |-  ( ( ph /\ y e. RR ) -> ( U / T ) e. ZZ )  | 
						
						
							| 232 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ y e. RR ) -> y e. RR )  | 
						
						
							| 233 | 
							
								6
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ y e. RR ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) )  | 
						
						
							| 234 | 
							
								193 194 231 232 233
							 | 
							fperiodmul | 
							 |-  ( ( ph /\ y e. RR ) -> ( F ` ( y + ( ( U / T ) x. T ) ) ) = ( F ` y ) )  | 
						
						
							| 235 | 
							
								192 234
							 | 
							eqtrd | 
							 |-  ( ( ph /\ y e. RR ) -> ( F ` ( y + U ) ) = ( F ` y ) )  | 
						
						
							| 236 | 
							
								180 235
							 | 
							sylan2 | 
							 |-  ( ( ph /\ y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) -> ( F ` ( y + U ) ) = ( F ` y ) )  | 
						
						
							| 237 | 
							
								23
							 | 
							simprrd | 
							 |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) )  | 
						
						
							| 238 | 
							
								
							 | 
							fveq2 | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( Q ` i ) = ( Q ` ( I ` ( S ` J ) ) ) )  | 
						
						
							| 239 | 
							
								
							 | 
							oveq1 | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( i + 1 ) = ( ( I ` ( S ` J ) ) + 1 ) )  | 
						
						
							| 240 | 
							
								239
							 | 
							fveq2d | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( Q ` ( i + 1 ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) )  | 
						
						
							| 241 | 
							
								238 240
							 | 
							breq12d | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` ( I ` ( S ` J ) ) ) < ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) )  | 
						
						
							| 242 | 
							
								241
							 | 
							rspccva | 
							 |-  ( ( A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( Q ` ( I ` ( S ` J ) ) ) < ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) )  | 
						
						
							| 243 | 
							
								237 61 242
							 | 
							syl2anc | 
							 |-  ( ph -> ( Q ` ( I ` ( S ` J ) ) ) < ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) )  | 
						
						
							| 244 | 
							
								61
							 | 
							ancli | 
							 |-  ( ph -> ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) )  | 
						
						
							| 245 | 
							
								
							 | 
							eleq1 | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( i e. ( 0 ..^ M ) <-> ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) )  | 
						
						
							| 246 | 
							
								245
							 | 
							anbi2d | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) )  | 
						
						
							| 247 | 
							
								238 240
							 | 
							oveq12d | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) )  | 
						
						
							| 248 | 
							
								247
							 | 
							reseq2d | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) )  | 
						
						
							| 249 | 
							
								247
							 | 
							oveq1d | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) = ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) )  | 
						
						
							| 250 | 
							
								248 249
							 | 
							eleq12d | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) <-> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) )  | 
						
						
							| 251 | 
							
								246 250
							 | 
							imbi12d | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) <-> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) ) )  | 
						
						
							| 252 | 
							
								251 7
							 | 
							vtoclg | 
							 |-  ( ( I ` ( S ` J ) ) e. ( 0 ..^ M ) -> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) ) )  | 
						
						
							| 253 | 
							
								61 244 252
							 | 
							sylc | 
							 |-  ( ph -> ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) e. ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) -cn-> CC ) )  | 
						
						
							| 254 | 
							
								
							 | 
							nfv | 
							 |-  F/ i ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) )  | 
						
						
							| 255 | 
							
								
							 | 
							nfmpt1 | 
							 |-  F/_ i ( i e. ( 0 ..^ M ) |-> L )  | 
						
						
							| 256 | 
							
								20 255
							 | 
							nfcxfr | 
							 |-  F/_ i W  | 
						
						
							| 257 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ i ( I ` ( S ` J ) )  | 
						
						
							| 258 | 
							
								256 257
							 | 
							nffv | 
							 |-  F/_ i ( W ` ( I ` ( S ` J ) ) )  | 
						
						
							| 259 | 
							
								258
							 | 
							nfel1 | 
							 |-  F/ i ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) )  | 
						
						
							| 260 | 
							
								254 259
							 | 
							nfim | 
							 |-  F/ i ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) )  | 
						
						
							| 261 | 
							
								246
							 | 
							biimpar | 
							 |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( ph /\ i e. ( 0 ..^ M ) ) )  | 
						
						
							| 262 | 
							
								261
							 | 
							3adant2 | 
							 |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( ph /\ i e. ( 0 ..^ M ) ) )  | 
						
						
							| 263 | 
							
								262 8
							 | 
							syl | 
							 |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 264 | 
							
								
							 | 
							fveq2 | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( W ` i ) = ( W ` ( I ` ( S ` J ) ) ) )  | 
						
						
							| 265 | 
							
								264
							 | 
							eqcomd | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( W ` ( I ` ( S ` J ) ) ) = ( W ` i ) )  | 
						
						
							| 266 | 
							
								265
							 | 
							adantr | 
							 |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( W ` ( I ` ( S ` J ) ) ) = ( W ` i ) )  | 
						
						
							| 267 | 
							
								261
							 | 
							simprd | 
							 |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> i e. ( 0 ..^ M ) )  | 
						
						
							| 268 | 
							
								
							 | 
							elex | 
							 |-  ( L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) -> L e. _V )  | 
						
						
							| 269 | 
							
								261 8 268
							 | 
							3syl | 
							 |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> L e. _V )  | 
						
						
							| 270 | 
							
								20
							 | 
							fvmpt2 | 
							 |-  ( ( i e. ( 0 ..^ M ) /\ L e. _V ) -> ( W ` i ) = L )  | 
						
						
							| 271 | 
							
								267 269 270
							 | 
							syl2anc | 
							 |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( W ` i ) = L )  | 
						
						
							| 272 | 
							
								266 271
							 | 
							eqtrd | 
							 |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( W ` ( I ` ( S ` J ) ) ) = L )  | 
						
						
							| 273 | 
							
								272
							 | 
							3adant2 | 
							 |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( W ` ( I ` ( S ` J ) ) ) = L )  | 
						
						
							| 274 | 
							
								248 240
							 | 
							oveq12d | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) )  | 
						
						
							| 275 | 
							
								274
							 | 
							eqcomd | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 276 | 
							
								275
							 | 
							3ad2ant1 | 
							 |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 277 | 
							
								263 273 276
							 | 
							3eltr4d | 
							 |-  ( ( i = ( I ` ( S ` J ) ) /\ ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) /\ ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) )  | 
						
						
							| 278 | 
							
								277
							 | 
							3exp | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) -> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) )  | 
						
						
							| 279 | 
							
								8
							 | 
							2a1i | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) -> ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 280 | 
							
								278 279
							 | 
							impbid | 
							 |-  ( i = ( I ` ( S ` J ) ) -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) <-> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ) )  | 
						
						
							| 281 | 
							
								260 280 8
							 | 
							vtoclg1f | 
							 |-  ( ( I ` ( S ` J ) ) e. ( 0 ..^ M ) -> ( ( ph /\ ( I ` ( S ` J ) ) e. ( 0 ..^ M ) ) -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) )  | 
						
						
							| 282 | 
							
								61 244 281
							 | 
							sylc | 
							 |-  ( ph -> ( W ` ( I ` ( S ` J ) ) ) e. ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) limCC ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) )  | 
						
						
							| 283 | 
							
								
							 | 
							eqid | 
							 |-  if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) = if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 284 | 
							
								
							 | 
							eqid | 
							 |-  ( ( TopOpen ` CCfld ) |`t ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) u. { ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) u. { ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) } ) ) | 
						
						
							| 285 | 
							
								63 68 243 253 282 89 83 133 147 283 284
							 | 
							fourierdlem33 | 
							 |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) limCC ( E ` ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 286 | 
							
								147
							 | 
							resabs1d | 
							 |-  ( ph -> ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( F |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) )  | 
						
						
							| 287 | 
							
								286
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) limCC ( E ` ( S ` ( J + 1 ) ) ) ) = ( ( F |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) limCC ( E ` ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 288 | 
							
								285 287
							 | 
							eleqtrd | 
							 |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( F |` ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) ) limCC ( E ` ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 289 | 
							
								167 169 171 174 175 179 236 288
							 | 
							limcperiod | 
							 |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) limCC ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) ) | 
						
						
							| 290 | 
							
								18
							 | 
							oveq2i | 
							 |-  ( ( E ` ( S ` ( J + 1 ) ) ) + U ) = ( ( E ` ( S ` ( J + 1 ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 291 | 
							
								195 196
							 | 
							pncan3d | 
							 |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( S ` ( J + 1 ) ) )  | 
						
						
							| 292 | 
							
								290 291
							 | 
							eqtrid | 
							 |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) + U ) = ( S ` ( J + 1 ) ) )  | 
						
						
							| 293 | 
							
								292
							 | 
							oveq2d | 
							 |-  ( ph -> ( ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) limCC ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) = ( ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) limCC ( S ` ( J + 1 ) ) ) ) | 
						
						
							| 294 | 
							
								289 293
							 | 
							eleqtrd | 
							 |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) limCC ( S ` ( J + 1 ) ) ) ) | 
						
						
							| 295 | 
							
								18
							 | 
							oveq2i | 
							 |-  ( ( Z ` ( E ` ( S ` J ) ) ) + U ) = ( ( Z ` ( E ` ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 296 | 
							
								295
							 | 
							a1i | 
							 |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) + U ) = ( ( Z ` ( E ` ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) )  | 
						
						
							| 297 | 
							
								9 31
							 | 
							iccssred | 
							 |-  ( ph -> ( C [,] D ) C_ RR )  | 
						
						
							| 298 | 
							
								
							 | 
							ax-resscn | 
							 |-  RR C_ CC  | 
						
						
							| 299 | 
							
								297 298
							 | 
							sstrdi | 
							 |-  ( ph -> ( C [,] D ) C_ CC )  | 
						
						
							| 300 | 
							
								11 51 50
							 | 
							fourierdlem15 | 
							 |-  ( ph -> S : ( 0 ... N ) --> ( C [,] D ) )  | 
						
						
							| 301 | 
							
								300 59
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( S ` J ) e. ( C [,] D ) )  | 
						
						
							| 302 | 
							
								299 301
							 | 
							sseldd | 
							 |-  ( ph -> ( S ` J ) e. CC )  | 
						
						
							| 303 | 
							
								196 302
							 | 
							subcld | 
							 |-  ( ph -> ( ( S ` ( J + 1 ) ) - ( S ` J ) ) e. CC )  | 
						
						
							| 304 | 
							
								89
							 | 
							recnd | 
							 |-  ( ph -> ( Z ` ( E ` ( S ` J ) ) ) e. CC )  | 
						
						
							| 305 | 
							
								195 303 304
							 | 
							subsub23d | 
							 |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( Z ` ( E ` ( S ` J ) ) ) <-> ( ( E ` ( S ` ( J + 1 ) ) ) - ( Z ` ( E ` ( S ` J ) ) ) ) = ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) )  | 
						
						
							| 306 | 
							
								130 305
							 | 
							mpbird | 
							 |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( Z ` ( E ` ( S ` J ) ) ) )  | 
						
						
							| 307 | 
							
								306
							 | 
							eqcomd | 
							 |-  ( ph -> ( Z ` ( E ` ( S ` J ) ) ) = ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) )  | 
						
						
							| 308 | 
							
								307
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) )  | 
						
						
							| 309 | 
							
								195 303
							 | 
							subcld | 
							 |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) e. CC )  | 
						
						
							| 310 | 
							
								309 196 195
							 | 
							addsub12d | 
							 |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( ( S ` ( J + 1 ) ) + ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) )  | 
						
						
							| 311 | 
							
								195 303 195
							 | 
							sub32d | 
							 |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) = ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) )  | 
						
						
							| 312 | 
							
								195
							 | 
							subidd | 
							 |-  ( ph -> ( ( E ` ( S ` ( J + 1 ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) = 0 )  | 
						
						
							| 313 | 
							
								312
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( 0 - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) )  | 
						
						
							| 314 | 
							
								
							 | 
							df-neg | 
							 |-  -u ( ( S ` ( J + 1 ) ) - ( S ` J ) ) = ( 0 - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) )  | 
						
						
							| 315 | 
							
								196 302
							 | 
							negsubdi2d | 
							 |-  ( ph -> -u ( ( S ` ( J + 1 ) ) - ( S ` J ) ) = ( ( S ` J ) - ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 316 | 
							
								314 315
							 | 
							eqtr3id | 
							 |-  ( ph -> ( 0 - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) = ( ( S ` J ) - ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 317 | 
							
								311 313 316
							 | 
							3eqtrd | 
							 |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) = ( ( S ` J ) - ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 318 | 
							
								317
							 | 
							oveq2d | 
							 |-  ( ph -> ( ( S ` ( J + 1 ) ) + ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( ( S ` ( J + 1 ) ) + ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) )  | 
						
						
							| 319 | 
							
								196 302
							 | 
							pncan3d | 
							 |-  ( ph -> ( ( S ` ( J + 1 ) ) + ( ( S ` J ) - ( S ` ( J + 1 ) ) ) ) = ( S ` J ) )  | 
						
						
							| 320 | 
							
								310 318 319
							 | 
							3eqtrd | 
							 |-  ( ph -> ( ( ( E ` ( S ` ( J + 1 ) ) ) - ( ( S ` ( J + 1 ) ) - ( S ` J ) ) ) + ( ( S ` ( J + 1 ) ) - ( E ` ( S ` ( J + 1 ) ) ) ) ) = ( S ` J ) )  | 
						
						
							| 321 | 
							
								296 308 320
							 | 
							3eqtrd | 
							 |-  ( ph -> ( ( Z ` ( E ` ( S ` J ) ) ) + U ) = ( S ` J ) )  | 
						
						
							| 322 | 
							
								321 292
							 | 
							oveq12d | 
							 |-  ( ph -> ( ( ( Z ` ( E ` ( S ` J ) ) ) + U ) (,) ( ( E ` ( S ` ( J + 1 ) ) ) + U ) ) = ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 323 | 
							
								176 322
							 | 
							eqtr3d | 
							 |-  ( ph -> { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } = ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) | 
						
						
							| 324 | 
							
								323
							 | 
							reseq2d | 
							 |-  ( ph -> ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) = ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) ) | 
						
						
							| 325 | 
							
								324
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( F |` { x e. CC | E. y e. ( ( Z ` ( E ` ( S ` J ) ) ) (,) ( E ` ( S ` ( J + 1 ) ) ) ) x = ( y + U ) } ) limCC ( S ` ( J + 1 ) ) ) = ( ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) limCC ( S ` ( J + 1 ) ) ) ) | 
						
						
							| 326 | 
							
								294 325
							 | 
							eleqtrd | 
							 |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( ( F |` ( ( Q ` ( I ` ( S ` J ) ) ) (,) ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) ) ) ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) limCC ( S ` ( J + 1 ) ) ) )  | 
						
						
							| 327 | 
							
								163 326
							 | 
							eqeltrd | 
							 |-  ( ph -> if ( ( E ` ( S ` ( J + 1 ) ) ) = ( Q ` ( ( I ` ( S ` J ) ) + 1 ) ) , ( W ` ( I ` ( S ` J ) ) ) , ( F ` ( E ` ( S ` ( J + 1 ) ) ) ) ) e. ( ( F |` ( ( S ` J ) (,) ( S ` ( J + 1 ) ) ) ) limCC ( S ` ( J + 1 ) ) ) )  |