Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem92.a |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem92.b |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem92.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
4 |
|
fourierdlem92.m |
|- ( ph -> M e. NN ) |
5 |
|
fourierdlem92.t |
|- ( ph -> T e. RR ) |
6 |
|
fourierdlem92.q |
|- ( ph -> Q e. ( P ` M ) ) |
7 |
|
fourierdlem92.fper |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
8 |
|
fourierdlem92.s |
|- S = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) |
9 |
|
fourierdlem92.h |
|- H = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
10 |
|
fourierdlem92.f |
|- ( ph -> F : RR --> CC ) |
11 |
|
fourierdlem92.cncf |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
12 |
|
fourierdlem92.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
13 |
|
fourierdlem92.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
14 |
1
|
adantr |
|- ( ( ph /\ 0 < T ) -> A e. RR ) |
15 |
2
|
adantr |
|- ( ( ph /\ 0 < T ) -> B e. RR ) |
16 |
4
|
adantr |
|- ( ( ph /\ 0 < T ) -> M e. NN ) |
17 |
5
|
adantr |
|- ( ( ph /\ 0 < T ) -> T e. RR ) |
18 |
|
simpr |
|- ( ( ph /\ 0 < T ) -> 0 < T ) |
19 |
17 18
|
elrpd |
|- ( ( ph /\ 0 < T ) -> T e. RR+ ) |
20 |
6
|
adantr |
|- ( ( ph /\ 0 < T ) -> Q e. ( P ` M ) ) |
21 |
7
|
adantlr |
|- ( ( ( ph /\ 0 < T ) /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
22 |
|
fveq2 |
|- ( j = i -> ( Q ` j ) = ( Q ` i ) ) |
23 |
22
|
oveq1d |
|- ( j = i -> ( ( Q ` j ) + T ) = ( ( Q ` i ) + T ) ) |
24 |
23
|
cbvmptv |
|- ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) |
25 |
10
|
adantr |
|- ( ( ph /\ 0 < T ) -> F : RR --> CC ) |
26 |
11
|
adantlr |
|- ( ( ( ph /\ 0 < T ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
27 |
12
|
adantlr |
|- ( ( ( ph /\ 0 < T ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
28 |
13
|
adantlr |
|- ( ( ( ph /\ 0 < T ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
29 |
|
eqeq1 |
|- ( y = x -> ( y = ( Q ` i ) <-> x = ( Q ` i ) ) ) |
30 |
|
eqeq1 |
|- ( y = x -> ( y = ( Q ` ( i + 1 ) ) <-> x = ( Q ` ( i + 1 ) ) ) ) |
31 |
|
fveq2 |
|- ( y = x -> ( F ` y ) = ( F ` x ) ) |
32 |
30 31
|
ifbieq2d |
|- ( y = x -> if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
33 |
29 32
|
ifbieq2d |
|- ( y = x -> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
34 |
33
|
cbvmptv |
|- ( y e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
35 |
|
eqid |
|- ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - T ) ) ) = ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - T ) ) ) |
36 |
14 15 3 16 19 20 21 24 25 26 27 28 34 35
|
fourierdlem81 |
|- ( ( ph /\ 0 < T ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
37 |
|
simpr |
|- ( ( ph /\ T = 0 ) -> T = 0 ) |
38 |
37
|
oveq2d |
|- ( ( ph /\ T = 0 ) -> ( A + T ) = ( A + 0 ) ) |
39 |
1
|
recnd |
|- ( ph -> A e. CC ) |
40 |
39
|
adantr |
|- ( ( ph /\ T = 0 ) -> A e. CC ) |
41 |
40
|
addid1d |
|- ( ( ph /\ T = 0 ) -> ( A + 0 ) = A ) |
42 |
38 41
|
eqtrd |
|- ( ( ph /\ T = 0 ) -> ( A + T ) = A ) |
43 |
37
|
oveq2d |
|- ( ( ph /\ T = 0 ) -> ( B + T ) = ( B + 0 ) ) |
44 |
2
|
recnd |
|- ( ph -> B e. CC ) |
45 |
44
|
adantr |
|- ( ( ph /\ T = 0 ) -> B e. CC ) |
46 |
45
|
addid1d |
|- ( ( ph /\ T = 0 ) -> ( B + 0 ) = B ) |
47 |
43 46
|
eqtrd |
|- ( ( ph /\ T = 0 ) -> ( B + T ) = B ) |
48 |
42 47
|
oveq12d |
|- ( ( ph /\ T = 0 ) -> ( ( A + T ) [,] ( B + T ) ) = ( A [,] B ) ) |
49 |
48
|
itgeq1d |
|- ( ( ph /\ T = 0 ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
50 |
49
|
adantlr |
|- ( ( ( ph /\ -. 0 < T ) /\ T = 0 ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
51 |
|
simpll |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> ph ) |
52 |
|
simpr |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> -. T = 0 ) |
53 |
|
simplr |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> -. 0 < T ) |
54 |
|
ioran |
|- ( -. ( T = 0 \/ 0 < T ) <-> ( -. T = 0 /\ -. 0 < T ) ) |
55 |
52 53 54
|
sylanbrc |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> -. ( T = 0 \/ 0 < T ) ) |
56 |
51 5
|
syl |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> T e. RR ) |
57 |
|
0red |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> 0 e. RR ) |
58 |
56 57
|
lttrid |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> ( T < 0 <-> -. ( T = 0 \/ 0 < T ) ) ) |
59 |
55 58
|
mpbird |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> T < 0 ) |
60 |
56
|
lt0neg1d |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> ( T < 0 <-> 0 < -u T ) ) |
61 |
59 60
|
mpbid |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> 0 < -u T ) |
62 |
1 5
|
readdcld |
|- ( ph -> ( A + T ) e. RR ) |
63 |
62
|
recnd |
|- ( ph -> ( A + T ) e. CC ) |
64 |
5
|
recnd |
|- ( ph -> T e. CC ) |
65 |
63 64
|
negsubd |
|- ( ph -> ( ( A + T ) + -u T ) = ( ( A + T ) - T ) ) |
66 |
39 64
|
pncand |
|- ( ph -> ( ( A + T ) - T ) = A ) |
67 |
65 66
|
eqtrd |
|- ( ph -> ( ( A + T ) + -u T ) = A ) |
68 |
2 5
|
readdcld |
|- ( ph -> ( B + T ) e. RR ) |
69 |
68
|
recnd |
|- ( ph -> ( B + T ) e. CC ) |
70 |
69 64
|
negsubd |
|- ( ph -> ( ( B + T ) + -u T ) = ( ( B + T ) - T ) ) |
71 |
44 64
|
pncand |
|- ( ph -> ( ( B + T ) - T ) = B ) |
72 |
70 71
|
eqtrd |
|- ( ph -> ( ( B + T ) + -u T ) = B ) |
73 |
67 72
|
oveq12d |
|- ( ph -> ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) = ( A [,] B ) ) |
74 |
73
|
eqcomd |
|- ( ph -> ( A [,] B ) = ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ) |
75 |
74
|
itgeq1d |
|- ( ph -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ( F ` x ) _d x ) |
76 |
75
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ( F ` x ) _d x ) |
77 |
1
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> A e. RR ) |
78 |
5
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> T e. RR ) |
79 |
77 78
|
readdcld |
|- ( ( ph /\ 0 < -u T ) -> ( A + T ) e. RR ) |
80 |
2
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> B e. RR ) |
81 |
80 78
|
readdcld |
|- ( ( ph /\ 0 < -u T ) -> ( B + T ) e. RR ) |
82 |
|
eqid |
|- ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
83 |
4
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> M e. NN ) |
84 |
78
|
renegcld |
|- ( ( ph /\ 0 < -u T ) -> -u T e. RR ) |
85 |
|
simpr |
|- ( ( ph /\ 0 < -u T ) -> 0 < -u T ) |
86 |
84 85
|
elrpd |
|- ( ( ph /\ 0 < -u T ) -> -u T e. RR+ ) |
87 |
3
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
88 |
4 87
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
89 |
6 88
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
90 |
89
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
91 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
92 |
90 91
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
93 |
92
|
ffvelrnda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
94 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> T e. RR ) |
95 |
93 94
|
readdcld |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( Q ` i ) + T ) e. RR ) |
96 |
95 8
|
fmptd |
|- ( ph -> S : ( 0 ... M ) --> RR ) |
97 |
|
reex |
|- RR e. _V |
98 |
97
|
a1i |
|- ( ph -> RR e. _V ) |
99 |
|
ovex |
|- ( 0 ... M ) e. _V |
100 |
99
|
a1i |
|- ( ph -> ( 0 ... M ) e. _V ) |
101 |
98 100
|
elmapd |
|- ( ph -> ( S e. ( RR ^m ( 0 ... M ) ) <-> S : ( 0 ... M ) --> RR ) ) |
102 |
96 101
|
mpbird |
|- ( ph -> S e. ( RR ^m ( 0 ... M ) ) ) |
103 |
8
|
a1i |
|- ( ph -> S = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) ) |
104 |
|
fveq2 |
|- ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) |
105 |
104
|
oveq1d |
|- ( i = 0 -> ( ( Q ` i ) + T ) = ( ( Q ` 0 ) + T ) ) |
106 |
105
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( ( Q ` i ) + T ) = ( ( Q ` 0 ) + T ) ) |
107 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
108 |
4
|
nnzd |
|- ( ph -> M e. ZZ ) |
109 |
|
0le0 |
|- 0 <_ 0 |
110 |
109
|
a1i |
|- ( ph -> 0 <_ 0 ) |
111 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
112 |
111
|
nn0ge0d |
|- ( M e. NN -> 0 <_ M ) |
113 |
4 112
|
syl |
|- ( ph -> 0 <_ M ) |
114 |
107 108 107 110 113
|
elfzd |
|- ( ph -> 0 e. ( 0 ... M ) ) |
115 |
92 114
|
ffvelrnd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
116 |
115 5
|
readdcld |
|- ( ph -> ( ( Q ` 0 ) + T ) e. RR ) |
117 |
103 106 114 116
|
fvmptd |
|- ( ph -> ( S ` 0 ) = ( ( Q ` 0 ) + T ) ) |
118 |
|
simprll |
|- ( ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) -> ( Q ` 0 ) = A ) |
119 |
89 118
|
syl |
|- ( ph -> ( Q ` 0 ) = A ) |
120 |
119
|
oveq1d |
|- ( ph -> ( ( Q ` 0 ) + T ) = ( A + T ) ) |
121 |
117 120
|
eqtrd |
|- ( ph -> ( S ` 0 ) = ( A + T ) ) |
122 |
|
fveq2 |
|- ( i = M -> ( Q ` i ) = ( Q ` M ) ) |
123 |
122
|
oveq1d |
|- ( i = M -> ( ( Q ` i ) + T ) = ( ( Q ` M ) + T ) ) |
124 |
123
|
adantl |
|- ( ( ph /\ i = M ) -> ( ( Q ` i ) + T ) = ( ( Q ` M ) + T ) ) |
125 |
4
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
126 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
127 |
125 126
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
128 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
129 |
127 128
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
130 |
92 129
|
ffvelrnd |
|- ( ph -> ( Q ` M ) e. RR ) |
131 |
130 5
|
readdcld |
|- ( ph -> ( ( Q ` M ) + T ) e. RR ) |
132 |
103 124 129 131
|
fvmptd |
|- ( ph -> ( S ` M ) = ( ( Q ` M ) + T ) ) |
133 |
|
simprlr |
|- ( ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) -> ( Q ` M ) = B ) |
134 |
89 133
|
syl |
|- ( ph -> ( Q ` M ) = B ) |
135 |
134
|
oveq1d |
|- ( ph -> ( ( Q ` M ) + T ) = ( B + T ) ) |
136 |
132 135
|
eqtrd |
|- ( ph -> ( S ` M ) = ( B + T ) ) |
137 |
121 136
|
jca |
|- ( ph -> ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) ) |
138 |
92
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
139 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
140 |
139
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
141 |
138 140
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
142 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
143 |
142
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
144 |
138 143
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
145 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. RR ) |
146 |
89
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
147 |
146
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
148 |
141 144 145 147
|
ltadd1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) < ( ( Q ` ( i + 1 ) ) + T ) ) |
149 |
141 145
|
readdcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) e. RR ) |
150 |
8
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( Q ` i ) + T ) e. RR ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) |
151 |
140 149 150
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) |
152 |
8 24
|
eqtr4i |
|- S = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) |
153 |
152
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ) |
154 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( Q ` j ) = ( Q ` ( i + 1 ) ) ) |
155 |
154
|
oveq1d |
|- ( j = ( i + 1 ) -> ( ( Q ` j ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
156 |
155
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( Q ` j ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
157 |
144 145
|
readdcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR ) |
158 |
153 156 143 157
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( i + 1 ) ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
159 |
148 151 158
|
3brtr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) < ( S ` ( i + 1 ) ) ) |
160 |
159
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) |
161 |
102 137 160
|
jca32 |
|- ( ph -> ( S e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) /\ A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) |
162 |
9
|
fourierdlem2 |
|- ( M e. NN -> ( S e. ( H ` M ) <-> ( S e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) /\ A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) ) |
163 |
4 162
|
syl |
|- ( ph -> ( S e. ( H ` M ) <-> ( S e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) /\ A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) ) |
164 |
161 163
|
mpbird |
|- ( ph -> S e. ( H ` M ) ) |
165 |
9
|
fveq1i |
|- ( H ` M ) = ( ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` M ) |
166 |
164 165
|
eleqtrdi |
|- ( ph -> S e. ( ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` M ) ) |
167 |
166
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> S e. ( ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` M ) ) |
168 |
62
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) e. RR ) |
169 |
68
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( B + T ) e. RR ) |
170 |
|
simpr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. ( ( A + T ) [,] ( B + T ) ) ) |
171 |
|
eliccre |
|- ( ( ( A + T ) e. RR /\ ( B + T ) e. RR /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. RR ) |
172 |
168 169 170 171
|
syl3anc |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. RR ) |
173 |
172
|
recnd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. CC ) |
174 |
64
|
negcld |
|- ( ph -> -u T e. CC ) |
175 |
174
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> -u T e. CC ) |
176 |
173 175
|
addcld |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) e. CC ) |
177 |
|
simpl |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ph ) |
178 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A e. RR ) |
179 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> B e. RR ) |
180 |
5
|
renegcld |
|- ( ph -> -u T e. RR ) |
181 |
180
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> -u T e. RR ) |
182 |
172 181
|
readdcld |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) e. RR ) |
183 |
65 66
|
eqtr2d |
|- ( ph -> A = ( ( A + T ) + -u T ) ) |
184 |
183
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A = ( ( A + T ) + -u T ) ) |
185 |
168
|
rexrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) e. RR* ) |
186 |
169
|
rexrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( B + T ) e. RR* ) |
187 |
|
iccgelb |
|- ( ( ( A + T ) e. RR* /\ ( B + T ) e. RR* /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) <_ x ) |
188 |
185 186 170 187
|
syl3anc |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) <_ x ) |
189 |
168 172 181 188
|
leadd1dd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( A + T ) + -u T ) <_ ( x + -u T ) ) |
190 |
184 189
|
eqbrtrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A <_ ( x + -u T ) ) |
191 |
|
iccleub |
|- ( ( ( A + T ) e. RR* /\ ( B + T ) e. RR* /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x <_ ( B + T ) ) |
192 |
185 186 170 191
|
syl3anc |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x <_ ( B + T ) ) |
193 |
172 169 181 192
|
leadd1dd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) <_ ( ( B + T ) + -u T ) ) |
194 |
169
|
recnd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( B + T ) e. CC ) |
195 |
64
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> T e. CC ) |
196 |
194 195
|
negsubd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( B + T ) + -u T ) = ( ( B + T ) - T ) ) |
197 |
71
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( B + T ) - T ) = B ) |
198 |
196 197
|
eqtrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( B + T ) + -u T ) = B ) |
199 |
193 198
|
breqtrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) <_ B ) |
200 |
178 179 182 190 199
|
eliccd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) e. ( A [,] B ) ) |
201 |
177 200
|
jca |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ph /\ ( x + -u T ) e. ( A [,] B ) ) ) |
202 |
|
eleq1 |
|- ( y = ( x + -u T ) -> ( y e. ( A [,] B ) <-> ( x + -u T ) e. ( A [,] B ) ) ) |
203 |
202
|
anbi2d |
|- ( y = ( x + -u T ) -> ( ( ph /\ y e. ( A [,] B ) ) <-> ( ph /\ ( x + -u T ) e. ( A [,] B ) ) ) ) |
204 |
|
oveq1 |
|- ( y = ( x + -u T ) -> ( y + T ) = ( ( x + -u T ) + T ) ) |
205 |
204
|
fveq2d |
|- ( y = ( x + -u T ) -> ( F ` ( y + T ) ) = ( F ` ( ( x + -u T ) + T ) ) ) |
206 |
|
fveq2 |
|- ( y = ( x + -u T ) -> ( F ` y ) = ( F ` ( x + -u T ) ) ) |
207 |
205 206
|
eqeq12d |
|- ( y = ( x + -u T ) -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) ) |
208 |
203 207
|
imbi12d |
|- ( y = ( x + -u T ) -> ( ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ ( x + -u T ) e. ( A [,] B ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) ) ) |
209 |
|
eleq1 |
|- ( x = y -> ( x e. ( A [,] B ) <-> y e. ( A [,] B ) ) ) |
210 |
209
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. ( A [,] B ) ) <-> ( ph /\ y e. ( A [,] B ) ) ) ) |
211 |
|
oveq1 |
|- ( x = y -> ( x + T ) = ( y + T ) ) |
212 |
211
|
fveq2d |
|- ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) |
213 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
214 |
212 213
|
eqeq12d |
|- ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) |
215 |
210 214
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) |
216 |
215 7
|
chvarvv |
|- ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
217 |
208 216
|
vtoclg |
|- ( ( x + -u T ) e. CC -> ( ( ph /\ ( x + -u T ) e. ( A [,] B ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) ) |
218 |
176 201 217
|
sylc |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) |
219 |
173 195
|
negsubd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) = ( x - T ) ) |
220 |
219
|
oveq1d |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( x + -u T ) + T ) = ( ( x - T ) + T ) ) |
221 |
173 195
|
npcand |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( x - T ) + T ) = x ) |
222 |
220 221
|
eqtrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( x + -u T ) + T ) = x ) |
223 |
222
|
fveq2d |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` x ) ) |
224 |
218 223
|
eqtr3d |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( x + -u T ) ) = ( F ` x ) ) |
225 |
224
|
adantlr |
|- ( ( ( ph /\ 0 < -u T ) /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( x + -u T ) ) = ( F ` x ) ) |
226 |
|
fveq2 |
|- ( j = i -> ( S ` j ) = ( S ` i ) ) |
227 |
226
|
oveq1d |
|- ( j = i -> ( ( S ` j ) + -u T ) = ( ( S ` i ) + -u T ) ) |
228 |
227
|
cbvmptv |
|- ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) = ( i e. ( 0 ... M ) |-> ( ( S ` i ) + -u T ) ) |
229 |
10
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> F : RR --> CC ) |
230 |
10
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> CC ) |
231 |
|
ioossre |
|- ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ RR |
232 |
231
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ RR ) |
233 |
230 232
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) = ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
234 |
151 158
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) = ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) |
235 |
141 144 145
|
iooshift |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) = { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) |
236 |
234 235
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) = { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) |
237 |
236
|
mpteq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( F ` x ) ) ) |
238 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ph ) |
239 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> i e. ( 0 ..^ M ) ) |
240 |
235
|
eleq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) <-> x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) ) |
241 |
240
|
biimpar |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) |
242 |
141
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
243 |
242
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) e. RR* ) |
244 |
144
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
245 |
244
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
246 |
|
elioore |
|- ( x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) -> x e. RR ) |
247 |
246
|
adantl |
|- ( ( ph /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. RR ) |
248 |
5
|
adantr |
|- ( ( ph /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> T e. RR ) |
249 |
247 248
|
resubcld |
|- ( ( ph /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. RR ) |
250 |
249
|
3adant2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. RR ) |
251 |
141
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
252 |
64
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. CC ) |
253 |
251 252
|
pncand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + T ) - T ) = ( Q ` i ) ) |
254 |
253
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( ( Q ` i ) + T ) - T ) ) |
255 |
254
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) = ( ( ( Q ` i ) + T ) - T ) ) |
256 |
149
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) e. RR ) |
257 |
247
|
3adant2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. RR ) |
258 |
5
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> T e. RR ) |
259 |
149
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) e. RR* ) |
260 |
259
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) e. RR* ) |
261 |
157
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR* ) |
262 |
261
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR* ) |
263 |
|
simp3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) |
264 |
|
ioogtlb |
|- ( ( ( ( Q ` i ) + T ) e. RR* /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR* /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) < x ) |
265 |
260 262 263 264
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) < x ) |
266 |
256 257 258 265
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` i ) + T ) - T ) < ( x - T ) ) |
267 |
255 266
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) < ( x - T ) ) |
268 |
157
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR ) |
269 |
|
iooltub |
|- ( ( ( ( Q ` i ) + T ) e. RR* /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR* /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x < ( ( Q ` ( i + 1 ) ) + T ) ) |
270 |
260 262 263 269
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x < ( ( Q ` ( i + 1 ) ) + T ) ) |
271 |
257 268 258 270
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) < ( ( ( Q ` ( i + 1 ) ) + T ) - T ) ) |
272 |
144
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
273 |
272 252
|
pncand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` ( i + 1 ) ) + T ) - T ) = ( Q ` ( i + 1 ) ) ) |
274 |
273
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` ( i + 1 ) ) + T ) - T ) = ( Q ` ( i + 1 ) ) ) |
275 |
271 274
|
breqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) < ( Q ` ( i + 1 ) ) ) |
276 |
243 245 250 267 275
|
eliood |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
277 |
238 239 241 276
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
278 |
|
fvres |
|- ( ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
279 |
277 278
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
280 |
238 241 249
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( x - T ) e. RR ) |
281 |
1
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A e. RR ) |
282 |
2
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> B e. RR ) |
283 |
66
|
eqcomd |
|- ( ph -> A = ( ( A + T ) - T ) ) |
284 |
283
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A = ( ( A + T ) - T ) ) |
285 |
62
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( A + T ) e. RR ) |
286 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR ) |
287 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
288 |
287
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* ) |
289 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
290 |
289
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* ) |
291 |
3 4 6
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
292 |
291
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
293 |
292 140
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( A [,] B ) ) |
294 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` i ) e. ( A [,] B ) ) -> A <_ ( Q ` i ) ) |
295 |
288 290 293 294
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A <_ ( Q ` i ) ) |
296 |
286 141 145 295
|
leadd1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A + T ) <_ ( ( Q ` i ) + T ) ) |
297 |
296
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( A + T ) <_ ( ( Q ` i ) + T ) ) |
298 |
285 256 257 297 265
|
lelttrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( A + T ) < x ) |
299 |
285 257 258 298
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( A + T ) - T ) < ( x - T ) ) |
300 |
284 299
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A < ( x - T ) ) |
301 |
281 250 300
|
ltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A <_ ( x - T ) ) |
302 |
144
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
303 |
292 143
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) |
304 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) -> ( Q ` ( i + 1 ) ) <_ B ) |
305 |
288 290 303 304
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) <_ B ) |
306 |
305
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` ( i + 1 ) ) <_ B ) |
307 |
250 302 282 275 306
|
ltletrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) < B ) |
308 |
250 282 307
|
ltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) <_ B ) |
309 |
281 282 250 301 308
|
eliccd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. ( A [,] B ) ) |
310 |
238 239 241 309
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( x - T ) e. ( A [,] B ) ) |
311 |
238 310
|
jca |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( ph /\ ( x - T ) e. ( A [,] B ) ) ) |
312 |
|
eleq1 |
|- ( y = ( x - T ) -> ( y e. ( A [,] B ) <-> ( x - T ) e. ( A [,] B ) ) ) |
313 |
312
|
anbi2d |
|- ( y = ( x - T ) -> ( ( ph /\ y e. ( A [,] B ) ) <-> ( ph /\ ( x - T ) e. ( A [,] B ) ) ) ) |
314 |
|
oveq1 |
|- ( y = ( x - T ) -> ( y + T ) = ( ( x - T ) + T ) ) |
315 |
314
|
fveq2d |
|- ( y = ( x - T ) -> ( F ` ( y + T ) ) = ( F ` ( ( x - T ) + T ) ) ) |
316 |
|
fveq2 |
|- ( y = ( x - T ) -> ( F ` y ) = ( F ` ( x - T ) ) ) |
317 |
315 316
|
eqeq12d |
|- ( y = ( x - T ) -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
318 |
313 317
|
imbi12d |
|- ( y = ( x - T ) -> ( ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ ( x - T ) e. ( A [,] B ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) ) |
319 |
318 216
|
vtoclg |
|- ( ( x - T ) e. RR -> ( ( ph /\ ( x - T ) e. ( A [,] B ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
320 |
280 311 319
|
sylc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) |
321 |
241 246
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> x e. RR ) |
322 |
|
recn |
|- ( x e. RR -> x e. CC ) |
323 |
322
|
adantl |
|- ( ( ph /\ x e. RR ) -> x e. CC ) |
324 |
64
|
adantr |
|- ( ( ph /\ x e. RR ) -> T e. CC ) |
325 |
323 324
|
npcand |
|- ( ( ph /\ x e. RR ) -> ( ( x - T ) + T ) = x ) |
326 |
325
|
fveq2d |
|- ( ( ph /\ x e. RR ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` x ) ) |
327 |
238 321 326
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` x ) ) |
328 |
279 320 327
|
3eqtr2rd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( F ` x ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
329 |
328
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( F ` x ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) |
330 |
233 237 329
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) |
331 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
332 |
331
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
333 |
|
eqeq1 |
|- ( w = x -> ( w = ( z + T ) <-> x = ( z + T ) ) ) |
334 |
333
|
rexbidv |
|- ( w = x -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) <-> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) ) |
335 |
|
oveq1 |
|- ( z = y -> ( z + T ) = ( y + T ) ) |
336 |
335
|
eqeq2d |
|- ( z = y -> ( x = ( z + T ) <-> x = ( y + T ) ) ) |
337 |
336
|
cbvrexvw |
|- ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) <-> E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) ) |
338 |
334 337
|
bitrdi |
|- ( w = x -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) <-> E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) ) ) |
339 |
338
|
cbvrabv |
|- { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } |
340 |
|
eqid |
|- ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
341 |
332 252 339 11 340
|
cncfshift |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) e. ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -cn-> CC ) ) |
342 |
236
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
343 |
342
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -cn-> CC ) = ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
344 |
341 343
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) e. ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
345 |
330 344
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) e. ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
346 |
345
|
adantlr |
|- ( ( ( ph /\ 0 < -u T ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) e. ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
347 |
|
ffdm |
|- ( F : RR --> CC -> ( F : dom F --> CC /\ dom F C_ RR ) ) |
348 |
10 347
|
syl |
|- ( ph -> ( F : dom F --> CC /\ dom F C_ RR ) ) |
349 |
348
|
simpld |
|- ( ph -> F : dom F --> CC ) |
350 |
349
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : dom F --> CC ) |
351 |
|
ioossre |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR |
352 |
|
fdm |
|- ( F : RR --> CC -> dom F = RR ) |
353 |
230 352
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom F = RR ) |
354 |
351 353
|
sseqtrrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
355 |
339
|
eqcomi |
|- { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } = { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |
356 |
232 342 353
|
3sstr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } C_ dom F ) |
357 |
339 356
|
eqsstrrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } C_ dom F ) |
358 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ph ) |
359 |
358 287
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A e. RR* ) |
360 |
358 289
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> B e. RR* ) |
361 |
358 291
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
362 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
363 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
364 |
363
|
sseli |
|- ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> z e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
365 |
364
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
366 |
359 360 361 362 365
|
fourierdlem1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( A [,] B ) ) |
367 |
|
eleq1 |
|- ( x = z -> ( x e. ( A [,] B ) <-> z e. ( A [,] B ) ) ) |
368 |
367
|
anbi2d |
|- ( x = z -> ( ( ph /\ x e. ( A [,] B ) ) <-> ( ph /\ z e. ( A [,] B ) ) ) ) |
369 |
|
oveq1 |
|- ( x = z -> ( x + T ) = ( z + T ) ) |
370 |
369
|
fveq2d |
|- ( x = z -> ( F ` ( x + T ) ) = ( F ` ( z + T ) ) ) |
371 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
372 |
370 371
|
eqeq12d |
|- ( x = z -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( z + T ) ) = ( F ` z ) ) ) |
373 |
368 372
|
imbi12d |
|- ( x = z -> ( ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) ) ) |
374 |
373 7
|
chvarvv |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) |
375 |
358 366 374
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) |
376 |
350 332 354 252 355 357 375 12
|
limcperiod |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` i ) + T ) ) ) |
377 |
355 342
|
syl5eq |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } = ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
378 |
377
|
reseq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) = ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ) |
379 |
151
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) = ( S ` i ) ) |
380 |
378 379
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` i ) + T ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` i ) ) ) |
381 |
376 380
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` i ) ) ) |
382 |
381
|
adantlr |
|- ( ( ( ph /\ 0 < -u T ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` i ) ) ) |
383 |
350 332 354 252 355 357 375 13
|
limcperiod |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` ( i + 1 ) ) + T ) ) ) |
384 |
158
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) = ( S ` ( i + 1 ) ) ) |
385 |
378 384
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` ( i + 1 ) ) + T ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` ( i + 1 ) ) ) ) |
386 |
383 385
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` ( i + 1 ) ) ) ) |
387 |
386
|
adantlr |
|- ( ( ( ph /\ 0 < -u T ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` ( i + 1 ) ) ) ) |
388 |
|
eqeq1 |
|- ( y = x -> ( y = ( S ` i ) <-> x = ( S ` i ) ) ) |
389 |
|
eqeq1 |
|- ( y = x -> ( y = ( S ` ( i + 1 ) ) <-> x = ( S ` ( i + 1 ) ) ) ) |
390 |
389 31
|
ifbieq2d |
|- ( y = x -> if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) = if ( x = ( S ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
391 |
388 390
|
ifbieq2d |
|- ( y = x -> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) = if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
392 |
391
|
cbvmptv |
|- ( y e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) = ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
393 |
|
eqid |
|- ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - -u T ) ) ) = ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - -u T ) ) ) |
394 |
79 81 82 83 86 167 225 228 229 346 382 387 392 393
|
fourierdlem81 |
|- ( ( ph /\ 0 < -u T ) -> S. ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ( F ` x ) _d x = S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x ) |
395 |
76 394
|
eqtr2d |
|- ( ( ph /\ 0 < -u T ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
396 |
51 61 395
|
syl2anc |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
397 |
50 396
|
pm2.61dan |
|- ( ( ph /\ -. 0 < T ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
398 |
36 397
|
pm2.61dan |
|- ( ph -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |