| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem92.a |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem92.b |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem92.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 4 |
|
fourierdlem92.m |
|- ( ph -> M e. NN ) |
| 5 |
|
fourierdlem92.t |
|- ( ph -> T e. RR ) |
| 6 |
|
fourierdlem92.q |
|- ( ph -> Q e. ( P ` M ) ) |
| 7 |
|
fourierdlem92.fper |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 8 |
|
fourierdlem92.s |
|- S = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) |
| 9 |
|
fourierdlem92.h |
|- H = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 10 |
|
fourierdlem92.f |
|- ( ph -> F : RR --> CC ) |
| 11 |
|
fourierdlem92.cncf |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 12 |
|
fourierdlem92.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 13 |
|
fourierdlem92.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 14 |
1
|
adantr |
|- ( ( ph /\ 0 < T ) -> A e. RR ) |
| 15 |
2
|
adantr |
|- ( ( ph /\ 0 < T ) -> B e. RR ) |
| 16 |
4
|
adantr |
|- ( ( ph /\ 0 < T ) -> M e. NN ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ 0 < T ) -> T e. RR ) |
| 18 |
|
simpr |
|- ( ( ph /\ 0 < T ) -> 0 < T ) |
| 19 |
17 18
|
elrpd |
|- ( ( ph /\ 0 < T ) -> T e. RR+ ) |
| 20 |
6
|
adantr |
|- ( ( ph /\ 0 < T ) -> Q e. ( P ` M ) ) |
| 21 |
7
|
adantlr |
|- ( ( ( ph /\ 0 < T ) /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 22 |
|
fveq2 |
|- ( j = i -> ( Q ` j ) = ( Q ` i ) ) |
| 23 |
22
|
oveq1d |
|- ( j = i -> ( ( Q ` j ) + T ) = ( ( Q ` i ) + T ) ) |
| 24 |
23
|
cbvmptv |
|- ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) |
| 25 |
10
|
adantr |
|- ( ( ph /\ 0 < T ) -> F : RR --> CC ) |
| 26 |
11
|
adantlr |
|- ( ( ( ph /\ 0 < T ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 27 |
12
|
adantlr |
|- ( ( ( ph /\ 0 < T ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 28 |
13
|
adantlr |
|- ( ( ( ph /\ 0 < T ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 29 |
|
eqeq1 |
|- ( y = x -> ( y = ( Q ` i ) <-> x = ( Q ` i ) ) ) |
| 30 |
|
eqeq1 |
|- ( y = x -> ( y = ( Q ` ( i + 1 ) ) <-> x = ( Q ` ( i + 1 ) ) ) ) |
| 31 |
|
fveq2 |
|- ( y = x -> ( F ` y ) = ( F ` x ) ) |
| 32 |
30 31
|
ifbieq2d |
|- ( y = x -> if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
| 33 |
29 32
|
ifbieq2d |
|- ( y = x -> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
| 34 |
33
|
cbvmptv |
|- ( y e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
| 35 |
|
eqid |
|- ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - T ) ) ) = ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( y = ( Q ` i ) , R , if ( y = ( Q ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - T ) ) ) |
| 36 |
14 15 3 16 19 20 21 24 25 26 27 28 34 35
|
fourierdlem81 |
|- ( ( ph /\ 0 < T ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 37 |
|
simpr |
|- ( ( ph /\ T = 0 ) -> T = 0 ) |
| 38 |
37
|
oveq2d |
|- ( ( ph /\ T = 0 ) -> ( A + T ) = ( A + 0 ) ) |
| 39 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ T = 0 ) -> A e. CC ) |
| 41 |
40
|
addridd |
|- ( ( ph /\ T = 0 ) -> ( A + 0 ) = A ) |
| 42 |
38 41
|
eqtrd |
|- ( ( ph /\ T = 0 ) -> ( A + T ) = A ) |
| 43 |
37
|
oveq2d |
|- ( ( ph /\ T = 0 ) -> ( B + T ) = ( B + 0 ) ) |
| 44 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ T = 0 ) -> B e. CC ) |
| 46 |
45
|
addridd |
|- ( ( ph /\ T = 0 ) -> ( B + 0 ) = B ) |
| 47 |
43 46
|
eqtrd |
|- ( ( ph /\ T = 0 ) -> ( B + T ) = B ) |
| 48 |
42 47
|
oveq12d |
|- ( ( ph /\ T = 0 ) -> ( ( A + T ) [,] ( B + T ) ) = ( A [,] B ) ) |
| 49 |
48
|
itgeq1d |
|- ( ( ph /\ T = 0 ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 50 |
49
|
adantlr |
|- ( ( ( ph /\ -. 0 < T ) /\ T = 0 ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 51 |
|
simpll |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> ph ) |
| 52 |
|
simpr |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> -. T = 0 ) |
| 53 |
|
simplr |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> -. 0 < T ) |
| 54 |
|
ioran |
|- ( -. ( T = 0 \/ 0 < T ) <-> ( -. T = 0 /\ -. 0 < T ) ) |
| 55 |
52 53 54
|
sylanbrc |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> -. ( T = 0 \/ 0 < T ) ) |
| 56 |
51 5
|
syl |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> T e. RR ) |
| 57 |
|
0red |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> 0 e. RR ) |
| 58 |
56 57
|
lttrid |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> ( T < 0 <-> -. ( T = 0 \/ 0 < T ) ) ) |
| 59 |
55 58
|
mpbird |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> T < 0 ) |
| 60 |
56
|
lt0neg1d |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> ( T < 0 <-> 0 < -u T ) ) |
| 61 |
59 60
|
mpbid |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> 0 < -u T ) |
| 62 |
1 5
|
readdcld |
|- ( ph -> ( A + T ) e. RR ) |
| 63 |
62
|
recnd |
|- ( ph -> ( A + T ) e. CC ) |
| 64 |
5
|
recnd |
|- ( ph -> T e. CC ) |
| 65 |
63 64
|
negsubd |
|- ( ph -> ( ( A + T ) + -u T ) = ( ( A + T ) - T ) ) |
| 66 |
39 64
|
pncand |
|- ( ph -> ( ( A + T ) - T ) = A ) |
| 67 |
65 66
|
eqtrd |
|- ( ph -> ( ( A + T ) + -u T ) = A ) |
| 68 |
2 5
|
readdcld |
|- ( ph -> ( B + T ) e. RR ) |
| 69 |
68
|
recnd |
|- ( ph -> ( B + T ) e. CC ) |
| 70 |
69 64
|
negsubd |
|- ( ph -> ( ( B + T ) + -u T ) = ( ( B + T ) - T ) ) |
| 71 |
44 64
|
pncand |
|- ( ph -> ( ( B + T ) - T ) = B ) |
| 72 |
70 71
|
eqtrd |
|- ( ph -> ( ( B + T ) + -u T ) = B ) |
| 73 |
67 72
|
oveq12d |
|- ( ph -> ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) = ( A [,] B ) ) |
| 74 |
73
|
eqcomd |
|- ( ph -> ( A [,] B ) = ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ) |
| 75 |
74
|
itgeq1d |
|- ( ph -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ( F ` x ) _d x ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ( F ` x ) _d x ) |
| 77 |
1
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> A e. RR ) |
| 78 |
5
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> T e. RR ) |
| 79 |
77 78
|
readdcld |
|- ( ( ph /\ 0 < -u T ) -> ( A + T ) e. RR ) |
| 80 |
2
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> B e. RR ) |
| 81 |
80 78
|
readdcld |
|- ( ( ph /\ 0 < -u T ) -> ( B + T ) e. RR ) |
| 82 |
|
eqid |
|- ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 83 |
4
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> M e. NN ) |
| 84 |
78
|
renegcld |
|- ( ( ph /\ 0 < -u T ) -> -u T e. RR ) |
| 85 |
|
simpr |
|- ( ( ph /\ 0 < -u T ) -> 0 < -u T ) |
| 86 |
84 85
|
elrpd |
|- ( ( ph /\ 0 < -u T ) -> -u T e. RR+ ) |
| 87 |
3
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 88 |
4 87
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 89 |
6 88
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
| 90 |
89
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
| 91 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 92 |
90 91
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 93 |
92
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
| 94 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> T e. RR ) |
| 95 |
93 94
|
readdcld |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( Q ` i ) + T ) e. RR ) |
| 96 |
95 8
|
fmptd |
|- ( ph -> S : ( 0 ... M ) --> RR ) |
| 97 |
|
reex |
|- RR e. _V |
| 98 |
97
|
a1i |
|- ( ph -> RR e. _V ) |
| 99 |
|
ovex |
|- ( 0 ... M ) e. _V |
| 100 |
99
|
a1i |
|- ( ph -> ( 0 ... M ) e. _V ) |
| 101 |
98 100
|
elmapd |
|- ( ph -> ( S e. ( RR ^m ( 0 ... M ) ) <-> S : ( 0 ... M ) --> RR ) ) |
| 102 |
96 101
|
mpbird |
|- ( ph -> S e. ( RR ^m ( 0 ... M ) ) ) |
| 103 |
8
|
a1i |
|- ( ph -> S = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) ) |
| 104 |
|
fveq2 |
|- ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) |
| 105 |
104
|
oveq1d |
|- ( i = 0 -> ( ( Q ` i ) + T ) = ( ( Q ` 0 ) + T ) ) |
| 106 |
105
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( ( Q ` i ) + T ) = ( ( Q ` 0 ) + T ) ) |
| 107 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 108 |
4
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 109 |
|
0le0 |
|- 0 <_ 0 |
| 110 |
109
|
a1i |
|- ( ph -> 0 <_ 0 ) |
| 111 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
| 112 |
111
|
nn0ge0d |
|- ( M e. NN -> 0 <_ M ) |
| 113 |
4 112
|
syl |
|- ( ph -> 0 <_ M ) |
| 114 |
107 108 107 110 113
|
elfzd |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 115 |
92 114
|
ffvelcdmd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
| 116 |
115 5
|
readdcld |
|- ( ph -> ( ( Q ` 0 ) + T ) e. RR ) |
| 117 |
103 106 114 116
|
fvmptd |
|- ( ph -> ( S ` 0 ) = ( ( Q ` 0 ) + T ) ) |
| 118 |
|
simprll |
|- ( ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) -> ( Q ` 0 ) = A ) |
| 119 |
89 118
|
syl |
|- ( ph -> ( Q ` 0 ) = A ) |
| 120 |
119
|
oveq1d |
|- ( ph -> ( ( Q ` 0 ) + T ) = ( A + T ) ) |
| 121 |
117 120
|
eqtrd |
|- ( ph -> ( S ` 0 ) = ( A + T ) ) |
| 122 |
|
fveq2 |
|- ( i = M -> ( Q ` i ) = ( Q ` M ) ) |
| 123 |
122
|
oveq1d |
|- ( i = M -> ( ( Q ` i ) + T ) = ( ( Q ` M ) + T ) ) |
| 124 |
123
|
adantl |
|- ( ( ph /\ i = M ) -> ( ( Q ` i ) + T ) = ( ( Q ` M ) + T ) ) |
| 125 |
4
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 126 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 127 |
125 126
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 128 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
| 129 |
127 128
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
| 130 |
92 129
|
ffvelcdmd |
|- ( ph -> ( Q ` M ) e. RR ) |
| 131 |
130 5
|
readdcld |
|- ( ph -> ( ( Q ` M ) + T ) e. RR ) |
| 132 |
103 124 129 131
|
fvmptd |
|- ( ph -> ( S ` M ) = ( ( Q ` M ) + T ) ) |
| 133 |
|
simprlr |
|- ( ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) -> ( Q ` M ) = B ) |
| 134 |
89 133
|
syl |
|- ( ph -> ( Q ` M ) = B ) |
| 135 |
134
|
oveq1d |
|- ( ph -> ( ( Q ` M ) + T ) = ( B + T ) ) |
| 136 |
132 135
|
eqtrd |
|- ( ph -> ( S ` M ) = ( B + T ) ) |
| 137 |
121 136
|
jca |
|- ( ph -> ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) ) |
| 138 |
92
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 139 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 140 |
139
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
| 141 |
138 140
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
| 142 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 143 |
142
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 144 |
138 143
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 145 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. RR ) |
| 146 |
89
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 147 |
146
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 148 |
141 144 145 147
|
ltadd1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) < ( ( Q ` ( i + 1 ) ) + T ) ) |
| 149 |
141 145
|
readdcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) e. RR ) |
| 150 |
8
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( Q ` i ) + T ) e. RR ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) |
| 151 |
140 149 150
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) |
| 152 |
8 24
|
eqtr4i |
|- S = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) |
| 153 |
152
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ) |
| 154 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( Q ` j ) = ( Q ` ( i + 1 ) ) ) |
| 155 |
154
|
oveq1d |
|- ( j = ( i + 1 ) -> ( ( Q ` j ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
| 156 |
155
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( Q ` j ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
| 157 |
144 145
|
readdcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR ) |
| 158 |
153 156 143 157
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( i + 1 ) ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
| 159 |
148 151 158
|
3brtr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) < ( S ` ( i + 1 ) ) ) |
| 160 |
159
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) |
| 161 |
102 137 160
|
jca32 |
|- ( ph -> ( S e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) /\ A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) |
| 162 |
9
|
fourierdlem2 |
|- ( M e. NN -> ( S e. ( H ` M ) <-> ( S e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) /\ A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) ) |
| 163 |
4 162
|
syl |
|- ( ph -> ( S e. ( H ` M ) <-> ( S e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( S ` 0 ) = ( A + T ) /\ ( S ` M ) = ( B + T ) ) /\ A. i e. ( 0 ..^ M ) ( S ` i ) < ( S ` ( i + 1 ) ) ) ) ) ) |
| 164 |
161 163
|
mpbird |
|- ( ph -> S e. ( H ` M ) ) |
| 165 |
9
|
fveq1i |
|- ( H ` M ) = ( ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` M ) |
| 166 |
164 165
|
eleqtrdi |
|- ( ph -> S e. ( ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` M ) ) |
| 167 |
166
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> S e. ( ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + T ) /\ ( p ` m ) = ( B + T ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` M ) ) |
| 168 |
62
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) e. RR ) |
| 169 |
68
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( B + T ) e. RR ) |
| 170 |
|
simpr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. ( ( A + T ) [,] ( B + T ) ) ) |
| 171 |
|
eliccre |
|- ( ( ( A + T ) e. RR /\ ( B + T ) e. RR /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. RR ) |
| 172 |
168 169 170 171
|
syl3anc |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. RR ) |
| 173 |
172
|
recnd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x e. CC ) |
| 174 |
64
|
negcld |
|- ( ph -> -u T e. CC ) |
| 175 |
174
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> -u T e. CC ) |
| 176 |
173 175
|
addcld |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) e. CC ) |
| 177 |
|
simpl |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ph ) |
| 178 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A e. RR ) |
| 179 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> B e. RR ) |
| 180 |
5
|
renegcld |
|- ( ph -> -u T e. RR ) |
| 181 |
180
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> -u T e. RR ) |
| 182 |
172 181
|
readdcld |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) e. RR ) |
| 183 |
65 66
|
eqtr2d |
|- ( ph -> A = ( ( A + T ) + -u T ) ) |
| 184 |
183
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A = ( ( A + T ) + -u T ) ) |
| 185 |
168
|
rexrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) e. RR* ) |
| 186 |
169
|
rexrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( B + T ) e. RR* ) |
| 187 |
|
iccgelb |
|- ( ( ( A + T ) e. RR* /\ ( B + T ) e. RR* /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) <_ x ) |
| 188 |
185 186 170 187
|
syl3anc |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( A + T ) <_ x ) |
| 189 |
168 172 181 188
|
leadd1dd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( A + T ) + -u T ) <_ ( x + -u T ) ) |
| 190 |
184 189
|
eqbrtrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> A <_ ( x + -u T ) ) |
| 191 |
|
iccleub |
|- ( ( ( A + T ) e. RR* /\ ( B + T ) e. RR* /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x <_ ( B + T ) ) |
| 192 |
185 186 170 191
|
syl3anc |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> x <_ ( B + T ) ) |
| 193 |
172 169 181 192
|
leadd1dd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) <_ ( ( B + T ) + -u T ) ) |
| 194 |
169
|
recnd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( B + T ) e. CC ) |
| 195 |
64
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> T e. CC ) |
| 196 |
194 195
|
negsubd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( B + T ) + -u T ) = ( ( B + T ) - T ) ) |
| 197 |
71
|
adantr |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( B + T ) - T ) = B ) |
| 198 |
196 197
|
eqtrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( B + T ) + -u T ) = B ) |
| 199 |
193 198
|
breqtrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) <_ B ) |
| 200 |
178 179 182 190 199
|
eliccd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) e. ( A [,] B ) ) |
| 201 |
177 200
|
jca |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ph /\ ( x + -u T ) e. ( A [,] B ) ) ) |
| 202 |
|
eleq1 |
|- ( y = ( x + -u T ) -> ( y e. ( A [,] B ) <-> ( x + -u T ) e. ( A [,] B ) ) ) |
| 203 |
202
|
anbi2d |
|- ( y = ( x + -u T ) -> ( ( ph /\ y e. ( A [,] B ) ) <-> ( ph /\ ( x + -u T ) e. ( A [,] B ) ) ) ) |
| 204 |
|
oveq1 |
|- ( y = ( x + -u T ) -> ( y + T ) = ( ( x + -u T ) + T ) ) |
| 205 |
204
|
fveq2d |
|- ( y = ( x + -u T ) -> ( F ` ( y + T ) ) = ( F ` ( ( x + -u T ) + T ) ) ) |
| 206 |
|
fveq2 |
|- ( y = ( x + -u T ) -> ( F ` y ) = ( F ` ( x + -u T ) ) ) |
| 207 |
205 206
|
eqeq12d |
|- ( y = ( x + -u T ) -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) ) |
| 208 |
203 207
|
imbi12d |
|- ( y = ( x + -u T ) -> ( ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ ( x + -u T ) e. ( A [,] B ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) ) ) |
| 209 |
|
eleq1 |
|- ( x = y -> ( x e. ( A [,] B ) <-> y e. ( A [,] B ) ) ) |
| 210 |
209
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. ( A [,] B ) ) <-> ( ph /\ y e. ( A [,] B ) ) ) ) |
| 211 |
|
oveq1 |
|- ( x = y -> ( x + T ) = ( y + T ) ) |
| 212 |
211
|
fveq2d |
|- ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) |
| 213 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
| 214 |
212 213
|
eqeq12d |
|- ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) |
| 215 |
210 214
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) |
| 216 |
215 7
|
chvarvv |
|- ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
| 217 |
208 216
|
vtoclg |
|- ( ( x + -u T ) e. CC -> ( ( ph /\ ( x + -u T ) e. ( A [,] B ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) ) |
| 218 |
176 201 217
|
sylc |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` ( x + -u T ) ) ) |
| 219 |
173 195
|
negsubd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( x + -u T ) = ( x - T ) ) |
| 220 |
219
|
oveq1d |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( x + -u T ) + T ) = ( ( x - T ) + T ) ) |
| 221 |
173 195
|
npcand |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( x - T ) + T ) = x ) |
| 222 |
220 221
|
eqtrd |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( ( x + -u T ) + T ) = x ) |
| 223 |
222
|
fveq2d |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( ( x + -u T ) + T ) ) = ( F ` x ) ) |
| 224 |
218 223
|
eqtr3d |
|- ( ( ph /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( x + -u T ) ) = ( F ` x ) ) |
| 225 |
224
|
adantlr |
|- ( ( ( ph /\ 0 < -u T ) /\ x e. ( ( A + T ) [,] ( B + T ) ) ) -> ( F ` ( x + -u T ) ) = ( F ` x ) ) |
| 226 |
|
fveq2 |
|- ( j = i -> ( S ` j ) = ( S ` i ) ) |
| 227 |
226
|
oveq1d |
|- ( j = i -> ( ( S ` j ) + -u T ) = ( ( S ` i ) + -u T ) ) |
| 228 |
227
|
cbvmptv |
|- ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) = ( i e. ( 0 ... M ) |-> ( ( S ` i ) + -u T ) ) |
| 229 |
10
|
adantr |
|- ( ( ph /\ 0 < -u T ) -> F : RR --> CC ) |
| 230 |
10
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> CC ) |
| 231 |
|
ioossre |
|- ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ RR |
| 232 |
231
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ RR ) |
| 233 |
230 232
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) = ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
| 234 |
151 158
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) = ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) |
| 235 |
141 144 145
|
iooshift |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) = { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) |
| 236 |
234 235
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) = { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) |
| 237 |
236
|
mpteq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( F ` x ) ) ) |
| 238 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ph ) |
| 239 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> i e. ( 0 ..^ M ) ) |
| 240 |
235
|
eleq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) <-> x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) ) |
| 241 |
240
|
biimpar |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) |
| 242 |
141
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
| 243 |
242
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) e. RR* ) |
| 244 |
144
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 245 |
244
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 246 |
|
elioore |
|- ( x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) -> x e. RR ) |
| 247 |
246
|
adantl |
|- ( ( ph /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. RR ) |
| 248 |
5
|
adantr |
|- ( ( ph /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> T e. RR ) |
| 249 |
247 248
|
resubcld |
|- ( ( ph /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. RR ) |
| 250 |
249
|
3adant2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. RR ) |
| 251 |
141
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
| 252 |
64
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. CC ) |
| 253 |
251 252
|
pncand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + T ) - T ) = ( Q ` i ) ) |
| 254 |
253
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( ( Q ` i ) + T ) - T ) ) |
| 255 |
254
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) = ( ( ( Q ` i ) + T ) - T ) ) |
| 256 |
149
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) e. RR ) |
| 257 |
247
|
3adant2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. RR ) |
| 258 |
5
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> T e. RR ) |
| 259 |
149
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) e. RR* ) |
| 260 |
259
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) e. RR* ) |
| 261 |
157
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR* ) |
| 262 |
261
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR* ) |
| 263 |
|
simp3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) |
| 264 |
|
ioogtlb |
|- ( ( ( ( Q ` i ) + T ) e. RR* /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR* /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) < x ) |
| 265 |
260 262 263 264
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) < x ) |
| 266 |
256 257 258 265
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` i ) + T ) - T ) < ( x - T ) ) |
| 267 |
255 266
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) < ( x - T ) ) |
| 268 |
157
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR ) |
| 269 |
|
iooltub |
|- ( ( ( ( Q ` i ) + T ) e. RR* /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR* /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x < ( ( Q ` ( i + 1 ) ) + T ) ) |
| 270 |
260 262 263 269
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x < ( ( Q ` ( i + 1 ) ) + T ) ) |
| 271 |
257 268 258 270
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) < ( ( ( Q ` ( i + 1 ) ) + T ) - T ) ) |
| 272 |
144
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
| 273 |
272 252
|
pncand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` ( i + 1 ) ) + T ) - T ) = ( Q ` ( i + 1 ) ) ) |
| 274 |
273
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` ( i + 1 ) ) + T ) - T ) = ( Q ` ( i + 1 ) ) ) |
| 275 |
271 274
|
breqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) < ( Q ` ( i + 1 ) ) ) |
| 276 |
243 245 250 267 275
|
eliood |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 277 |
238 239 241 276
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 278 |
|
fvres |
|- ( ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
| 279 |
277 278
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
| 280 |
238 241 249
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( x - T ) e. RR ) |
| 281 |
1
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A e. RR ) |
| 282 |
2
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> B e. RR ) |
| 283 |
66
|
eqcomd |
|- ( ph -> A = ( ( A + T ) - T ) ) |
| 284 |
283
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A = ( ( A + T ) - T ) ) |
| 285 |
62
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( A + T ) e. RR ) |
| 286 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR ) |
| 287 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 288 |
287
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* ) |
| 289 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 290 |
289
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* ) |
| 291 |
3 4 6
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 292 |
291
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 293 |
292 140
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( A [,] B ) ) |
| 294 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` i ) e. ( A [,] B ) ) -> A <_ ( Q ` i ) ) |
| 295 |
288 290 293 294
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A <_ ( Q ` i ) ) |
| 296 |
286 141 145 295
|
leadd1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A + T ) <_ ( ( Q ` i ) + T ) ) |
| 297 |
296
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( A + T ) <_ ( ( Q ` i ) + T ) ) |
| 298 |
285 256 257 297 265
|
lelttrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( A + T ) < x ) |
| 299 |
285 257 258 298
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( A + T ) - T ) < ( x - T ) ) |
| 300 |
284 299
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A < ( x - T ) ) |
| 301 |
281 250 300
|
ltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> A <_ ( x - T ) ) |
| 302 |
144
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 303 |
292 143
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) |
| 304 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) -> ( Q ` ( i + 1 ) ) <_ B ) |
| 305 |
288 290 303 304
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) <_ B ) |
| 306 |
305
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` ( i + 1 ) ) <_ B ) |
| 307 |
250 302 282 275 306
|
ltletrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) < B ) |
| 308 |
250 282 307
|
ltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) <_ B ) |
| 309 |
281 282 250 301 308
|
eliccd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ x e. ( ( ( Q ` i ) + T ) (,) ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. ( A [,] B ) ) |
| 310 |
238 239 241 309
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( x - T ) e. ( A [,] B ) ) |
| 311 |
238 310
|
jca |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( ph /\ ( x - T ) e. ( A [,] B ) ) ) |
| 312 |
|
eleq1 |
|- ( y = ( x - T ) -> ( y e. ( A [,] B ) <-> ( x - T ) e. ( A [,] B ) ) ) |
| 313 |
312
|
anbi2d |
|- ( y = ( x - T ) -> ( ( ph /\ y e. ( A [,] B ) ) <-> ( ph /\ ( x - T ) e. ( A [,] B ) ) ) ) |
| 314 |
|
oveq1 |
|- ( y = ( x - T ) -> ( y + T ) = ( ( x - T ) + T ) ) |
| 315 |
314
|
fveq2d |
|- ( y = ( x - T ) -> ( F ` ( y + T ) ) = ( F ` ( ( x - T ) + T ) ) ) |
| 316 |
|
fveq2 |
|- ( y = ( x - T ) -> ( F ` y ) = ( F ` ( x - T ) ) ) |
| 317 |
315 316
|
eqeq12d |
|- ( y = ( x - T ) -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
| 318 |
313 317
|
imbi12d |
|- ( y = ( x - T ) -> ( ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ ( x - T ) e. ( A [,] B ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) ) |
| 319 |
318 216
|
vtoclg |
|- ( ( x - T ) e. RR -> ( ( ph /\ ( x - T ) e. ( A [,] B ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
| 320 |
280 311 319
|
sylc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) |
| 321 |
241 246
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> x e. RR ) |
| 322 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 323 |
322
|
adantl |
|- ( ( ph /\ x e. RR ) -> x e. CC ) |
| 324 |
64
|
adantr |
|- ( ( ph /\ x e. RR ) -> T e. CC ) |
| 325 |
323 324
|
npcand |
|- ( ( ph /\ x e. RR ) -> ( ( x - T ) + T ) = x ) |
| 326 |
325
|
fveq2d |
|- ( ( ph /\ x e. RR ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` x ) ) |
| 327 |
238 321 326
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` x ) ) |
| 328 |
279 320 327
|
3eqtr2rd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> ( F ` x ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
| 329 |
328
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( F ` x ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) |
| 330 |
233 237 329
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) |
| 331 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
| 332 |
331
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
| 333 |
|
eqeq1 |
|- ( w = x -> ( w = ( z + T ) <-> x = ( z + T ) ) ) |
| 334 |
333
|
rexbidv |
|- ( w = x -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) <-> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) ) |
| 335 |
|
oveq1 |
|- ( z = y -> ( z + T ) = ( y + T ) ) |
| 336 |
335
|
eqeq2d |
|- ( z = y -> ( x = ( z + T ) <-> x = ( y + T ) ) ) |
| 337 |
336
|
cbvrexvw |
|- ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) <-> E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) ) |
| 338 |
334 337
|
bitrdi |
|- ( w = x -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) <-> E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) ) ) |
| 339 |
338
|
cbvrabv |
|- { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } |
| 340 |
|
eqid |
|- ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) = ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
| 341 |
332 252 339 11 340
|
cncfshift |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) e. ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -cn-> CC ) ) |
| 342 |
236
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
| 343 |
342
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -cn-> CC ) = ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 344 |
341 343
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) e. ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 345 |
330 344
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) e. ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 346 |
345
|
adantlr |
|- ( ( ( ph /\ 0 < -u T ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) e. ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 347 |
|
ffdm |
|- ( F : RR --> CC -> ( F : dom F --> CC /\ dom F C_ RR ) ) |
| 348 |
10 347
|
syl |
|- ( ph -> ( F : dom F --> CC /\ dom F C_ RR ) ) |
| 349 |
348
|
simpld |
|- ( ph -> F : dom F --> CC ) |
| 350 |
349
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : dom F --> CC ) |
| 351 |
|
ioossre |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR |
| 352 |
|
fdm |
|- ( F : RR --> CC -> dom F = RR ) |
| 353 |
230 352
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom F = RR ) |
| 354 |
351 353
|
sseqtrrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
| 355 |
339
|
eqcomi |
|- { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } = { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |
| 356 |
232 342 353
|
3sstr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } C_ dom F ) |
| 357 |
339 356
|
eqsstrrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } C_ dom F ) |
| 358 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ph ) |
| 359 |
358 287
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A e. RR* ) |
| 360 |
358 289
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> B e. RR* ) |
| 361 |
358 291
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 362 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
| 363 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
| 364 |
363
|
sseli |
|- ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> z e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 365 |
364
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 366 |
359 360 361 362 365
|
fourierdlem1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( A [,] B ) ) |
| 367 |
|
eleq1 |
|- ( x = z -> ( x e. ( A [,] B ) <-> z e. ( A [,] B ) ) ) |
| 368 |
367
|
anbi2d |
|- ( x = z -> ( ( ph /\ x e. ( A [,] B ) ) <-> ( ph /\ z e. ( A [,] B ) ) ) ) |
| 369 |
|
oveq1 |
|- ( x = z -> ( x + T ) = ( z + T ) ) |
| 370 |
369
|
fveq2d |
|- ( x = z -> ( F ` ( x + T ) ) = ( F ` ( z + T ) ) ) |
| 371 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
| 372 |
370 371
|
eqeq12d |
|- ( x = z -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( z + T ) ) = ( F ` z ) ) ) |
| 373 |
368 372
|
imbi12d |
|- ( x = z -> ( ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) ) ) |
| 374 |
373 7
|
chvarvv |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) |
| 375 |
358 366 374
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) |
| 376 |
350 332 354 252 355 357 375 12
|
limcperiod |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` i ) + T ) ) ) |
| 377 |
355 342
|
eqtrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } = ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
| 378 |
377
|
reseq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) = ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ) |
| 379 |
151
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) = ( S ` i ) ) |
| 380 |
378 379
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` i ) + T ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` i ) ) ) |
| 381 |
376 380
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` i ) ) ) |
| 382 |
381
|
adantlr |
|- ( ( ( ph /\ 0 < -u T ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` i ) ) ) |
| 383 |
350 332 354 252 355 357 375 13
|
limcperiod |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` ( i + 1 ) ) + T ) ) ) |
| 384 |
158
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) = ( S ` ( i + 1 ) ) ) |
| 385 |
378 384
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } ) limCC ( ( Q ` ( i + 1 ) ) + T ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` ( i + 1 ) ) ) ) |
| 386 |
383 385
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` ( i + 1 ) ) ) ) |
| 387 |
386
|
adantlr |
|- ( ( ( ph /\ 0 < -u T ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) limCC ( S ` ( i + 1 ) ) ) ) |
| 388 |
|
eqeq1 |
|- ( y = x -> ( y = ( S ` i ) <-> x = ( S ` i ) ) ) |
| 389 |
|
eqeq1 |
|- ( y = x -> ( y = ( S ` ( i + 1 ) ) <-> x = ( S ` ( i + 1 ) ) ) ) |
| 390 |
389 31
|
ifbieq2d |
|- ( y = x -> if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) = if ( x = ( S ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
| 391 |
388 390
|
ifbieq2d |
|- ( y = x -> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) = if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
| 392 |
391
|
cbvmptv |
|- ( y e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) = ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
| 393 |
|
eqid |
|- ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - -u T ) ) ) = ( x e. ( ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` i ) [,] ( ( j e. ( 0 ... M ) |-> ( ( S ` j ) + -u T ) ) ` ( i + 1 ) ) ) |-> ( ( y e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( y = ( S ` i ) , R , if ( y = ( S ` ( i + 1 ) ) , L , ( F ` y ) ) ) ) ` ( x - -u T ) ) ) |
| 394 |
79 81 82 83 86 167 225 228 229 346 382 387 392 393
|
fourierdlem81 |
|- ( ( ph /\ 0 < -u T ) -> S. ( ( ( A + T ) + -u T ) [,] ( ( B + T ) + -u T ) ) ( F ` x ) _d x = S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x ) |
| 395 |
76 394
|
eqtr2d |
|- ( ( ph /\ 0 < -u T ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 396 |
51 61 395
|
syl2anc |
|- ( ( ( ph /\ -. 0 < T ) /\ -. T = 0 ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 397 |
50 396
|
pm2.61dan |
|- ( ( ph /\ -. 0 < T ) -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 398 |
36 397
|
pm2.61dan |
|- ( ph -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |