Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem94.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem94.t |
|- T = ( 2 x. _pi ) |
3 |
|
fourierdlem94.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
4 |
|
fourierdlem94.x |
|- ( ph -> X e. RR ) |
5 |
|
fourierdlem94.p |
|- P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
6 |
|
fourierdlem94.m |
|- ( ph -> M e. NN ) |
7 |
|
fourierdlem94.q |
|- ( ph -> Q e. ( P ` M ) ) |
8 |
|
fourierdlem94.dvcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
9 |
|
fourierdlem94.dvlb |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
10 |
|
fourierdlem94.dvub |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
11 |
|
pire |
|- _pi e. RR |
12 |
11
|
renegcli |
|- -u _pi e. RR |
13 |
12
|
a1i |
|- ( ph -> -u _pi e. RR ) |
14 |
11
|
a1i |
|- ( ph -> _pi e. RR ) |
15 |
|
negpilt0 |
|- -u _pi < 0 |
16 |
|
pipos |
|- 0 < _pi |
17 |
|
0re |
|- 0 e. RR |
18 |
12 17 11
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
19 |
15 16 18
|
mp2an |
|- -u _pi < _pi |
20 |
19
|
a1i |
|- ( ph -> -u _pi < _pi ) |
21 |
|
picn |
|- _pi e. CC |
22 |
21
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
23 |
21 21
|
subnegi |
|- ( _pi - -u _pi ) = ( _pi + _pi ) |
24 |
22 2 23
|
3eqtr4i |
|- T = ( _pi - -u _pi ) |
25 |
|
ssid |
|- RR C_ RR |
26 |
25
|
a1i |
|- ( ph -> RR C_ RR ) |
27 |
|
simp2 |
|- ( ( ph /\ x e. RR /\ k e. ZZ ) -> x e. RR ) |
28 |
|
zre |
|- ( k e. ZZ -> k e. RR ) |
29 |
28
|
3ad2ant3 |
|- ( ( ph /\ x e. RR /\ k e. ZZ ) -> k e. RR ) |
30 |
|
2re |
|- 2 e. RR |
31 |
30 11
|
remulcli |
|- ( 2 x. _pi ) e. RR |
32 |
31
|
a1i |
|- ( ph -> ( 2 x. _pi ) e. RR ) |
33 |
2 32
|
eqeltrid |
|- ( ph -> T e. RR ) |
34 |
33
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> T e. RR ) |
35 |
34
|
3adant2 |
|- ( ( ph /\ x e. RR /\ k e. ZZ ) -> T e. RR ) |
36 |
29 35
|
remulcld |
|- ( ( ph /\ x e. RR /\ k e. ZZ ) -> ( k x. T ) e. RR ) |
37 |
27 36
|
readdcld |
|- ( ( ph /\ x e. RR /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. RR ) |
38 |
|
simp1 |
|- ( ( ph /\ x e. RR /\ k e. ZZ ) -> ph ) |
39 |
|
simp3 |
|- ( ( ph /\ x e. RR /\ k e. ZZ ) -> k e. ZZ ) |
40 |
|
ax-resscn |
|- RR C_ CC |
41 |
40
|
a1i |
|- ( ph -> RR C_ CC ) |
42 |
1 41
|
fssd |
|- ( ph -> F : RR --> CC ) |
43 |
42
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> F : RR --> CC ) |
44 |
43
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> F : RR --> CC ) |
45 |
34
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> T e. RR ) |
46 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> k e. ZZ ) |
47 |
|
simpr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> x e. RR ) |
48 |
|
eleq1w |
|- ( x = y -> ( x e. RR <-> y e. RR ) ) |
49 |
48
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. RR ) <-> ( ph /\ y e. RR ) ) ) |
50 |
|
oveq1 |
|- ( x = y -> ( x + T ) = ( y + T ) ) |
51 |
50
|
fveq2d |
|- ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) |
52 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
53 |
51 52
|
eqeq12d |
|- ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) |
54 |
49 53
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) |
55 |
54 3
|
chvarvv |
|- ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
56 |
55
|
ad4ant14 |
|- ( ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
57 |
44 45 46 47 56
|
fperiodmul |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) |
58 |
38 39 27 57
|
syl21anc |
|- ( ( ph /\ x e. RR /\ k e. ZZ ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) |
59 |
40
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ CC ) |
60 |
|
ioossre |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR |
61 |
60
|
a1i |
|- ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
62 |
1 61
|
fssresd |
|- ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR ) |
63 |
62 41
|
fssd |
|- ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
64 |
63
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
65 |
60
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
66 |
42
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> CC ) |
67 |
25
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ RR ) |
68 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
69 |
68
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
70 |
68 69
|
dvres |
|- ( ( ( RR C_ CC /\ F : RR --> CC ) /\ ( RR C_ RR /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
71 |
59 66 67 65 70
|
syl22anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
72 |
71
|
dmeqd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
73 |
|
ioontr |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |
74 |
73
|
reseq2i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
75 |
74
|
dmeqi |
|- dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
76 |
75
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
77 |
|
cncff |
|- ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
78 |
|
fdm |
|- ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
79 |
8 77 78
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
80 |
72 76 79
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
81 |
|
dvcn |
|- ( ( ( RR C_ CC /\ ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) /\ dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
82 |
59 64 65 80 81
|
syl31anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
83 |
65 40
|
sstrdi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
84 |
5
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
85 |
6 84
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
86 |
7 85
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
87 |
86
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
88 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
89 |
87 88
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
90 |
89
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
91 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
92 |
91
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
93 |
90 92
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
94 |
93
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
95 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
96 |
95
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
97 |
90 96
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
98 |
86
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
99 |
98
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
100 |
68 94 97 99
|
lptioo2cn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
101 |
62
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR ) |
102 |
41 42 26
|
dvbss |
|- ( ph -> dom ( RR _D F ) C_ RR ) |
103 |
|
dvfre |
|- ( ( F : RR --> RR /\ RR C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
104 |
1 26 103
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
105 |
86
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
106 |
105
|
simplld |
|- ( ph -> ( Q ` 0 ) = -u _pi ) |
107 |
105
|
simplrd |
|- ( ph -> ( Q ` M ) = _pi ) |
108 |
8 77
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
109 |
97
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
110 |
68 109 93 99
|
lptioo1cn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
111 |
108 83 110 9 68
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
112 |
108 83 100 10 68
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
113 |
28
|
adantl |
|- ( ( ph /\ k e. ZZ ) -> k e. RR ) |
114 |
113 34
|
remulcld |
|- ( ( ph /\ k e. ZZ ) -> ( k x. T ) e. RR ) |
115 |
43
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> F : RR --> CC ) |
116 |
34
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> T e. RR ) |
117 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> k e. ZZ ) |
118 |
|
simpr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> t e. RR ) |
119 |
3
|
ad4ant14 |
|- ( ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
120 |
115 116 117 118 119
|
fperiodmul |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> ( F ` ( t + ( k x. T ) ) ) = ( F ` t ) ) |
121 |
|
eqid |
|- ( RR _D F ) = ( RR _D F ) |
122 |
43 114 120 121
|
fperdvper |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. dom ( RR _D F ) ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) ) |
123 |
122
|
an32s |
|- ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) ) |
124 |
123
|
simpld |
|- ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. dom ( RR _D F ) ) |
125 |
123
|
simprd |
|- ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) |
126 |
|
fveq2 |
|- ( j = i -> ( Q ` j ) = ( Q ` i ) ) |
127 |
|
oveq1 |
|- ( j = i -> ( j + 1 ) = ( i + 1 ) ) |
128 |
127
|
fveq2d |
|- ( j = i -> ( Q ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) |
129 |
126 128
|
oveq12d |
|- ( j = i -> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
130 |
129
|
cbvmptv |
|- ( j e. ( 0 ..^ M ) |-> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) = ( i e. ( 0 ..^ M ) |-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
131 |
|
eqid |
|- ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) ) = ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) ) |
132 |
102 104 13 14 20 24 6 89 106 107 8 111 112 124 125 130 131
|
fourierdlem71 |
|- ( ph -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
133 |
132
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
134 |
|
nfv |
|- F/ t ( ph /\ i e. ( 0 ..^ M ) ) |
135 |
|
nfra1 |
|- F/ t A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z |
136 |
134 135
|
nfan |
|- F/ t ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
137 |
71 74
|
eqtrdi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
138 |
137
|
fveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) ) |
139 |
|
fvres |
|- ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) |
140 |
138 139
|
sylan9eq |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) |
141 |
140
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) |
142 |
141
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) |
143 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
144 |
|
ssdmres |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
145 |
79 144
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) |
146 |
145
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) |
147 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
148 |
146 147
|
sseldd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. dom ( RR _D F ) ) |
149 |
|
rspa |
|- ( ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z /\ t e. dom ( RR _D F ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
150 |
143 148 149
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
151 |
142 150
|
eqbrtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) |
152 |
151
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) |
153 |
136 152
|
ralrimi |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) |
154 |
153
|
ex |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) |
155 |
154
|
reximdv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) |
156 |
133 155
|
mpd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) |
157 |
93 97 101 80 156
|
ioodvbdlimc2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
158 |
64 83 100 157 68
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
159 |
|
oveq2 |
|- ( y = x -> ( _pi - y ) = ( _pi - x ) ) |
160 |
159
|
oveq1d |
|- ( y = x -> ( ( _pi - y ) / T ) = ( ( _pi - x ) / T ) ) |
161 |
160
|
fveq2d |
|- ( y = x -> ( |_ ` ( ( _pi - y ) / T ) ) = ( |_ ` ( ( _pi - x ) / T ) ) ) |
162 |
161
|
oveq1d |
|- ( y = x -> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) = ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) |
163 |
162
|
cbvmptv |
|- ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) = ( x e. RR |-> ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) |
164 |
|
id |
|- ( z = x -> z = x ) |
165 |
|
fveq2 |
|- ( z = x -> ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) = ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) |
166 |
164 165
|
oveq12d |
|- ( z = x -> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) = ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) ) |
167 |
166
|
cbvmptv |
|- ( z e. RR |-> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) ) = ( x e. RR |-> ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) ) |
168 |
13 14 20 5 24 6 7 26 1 37 58 82 158 4 163 167
|
fourierdlem49 |
|- ( ph -> ( ( F |` ( -oo (,) X ) ) limCC X ) =/= (/) ) |
169 |
93 97 101 80 156
|
ioodvbdlimc1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
170 |
64 83 110 169 68
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
171 |
|
biid |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) ) |
172 |
13 14 20 5 24 6 7 1 37 58 82 170 4 163 167 171
|
fourierdlem48 |
|- ( ph -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) |
173 |
168 172
|
jca |
|- ( ph -> ( ( ( F |` ( -oo (,) X ) ) limCC X ) =/= (/) /\ ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) ) |