| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem94.f | 
							 |-  ( ph -> F : RR --> RR )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem94.t | 
							 |-  T = ( 2 x. _pi )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem94.per | 
							 |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem94.x | 
							 |-  ( ph -> X e. RR )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem94.p | 
							 |-  P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
						
							| 6 | 
							
								
							 | 
							fourierdlem94.m | 
							 |-  ( ph -> M e. NN )  | 
						
						
							| 7 | 
							
								
							 | 
							fourierdlem94.q | 
							 |-  ( ph -> Q e. ( P ` M ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fourierdlem94.dvcn | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fourierdlem94.dvlb | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) )  | 
						
						
							| 10 | 
							
								
							 | 
							fourierdlem94.dvub | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) )  | 
						
						
							| 11 | 
							
								
							 | 
							pire | 
							 |-  _pi e. RR  | 
						
						
							| 12 | 
							
								11
							 | 
							renegcli | 
							 |-  -u _pi e. RR  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							 |-  ( ph -> -u _pi e. RR )  | 
						
						
							| 14 | 
							
								11
							 | 
							a1i | 
							 |-  ( ph -> _pi e. RR )  | 
						
						
							| 15 | 
							
								
							 | 
							negpilt0 | 
							 |-  -u _pi < 0  | 
						
						
							| 16 | 
							
								
							 | 
							pipos | 
							 |-  0 < _pi  | 
						
						
							| 17 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 18 | 
							
								12 17 11
							 | 
							lttri | 
							 |-  ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi )  | 
						
						
							| 19 | 
							
								15 16 18
							 | 
							mp2an | 
							 |-  -u _pi < _pi  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							 |-  ( ph -> -u _pi < _pi )  | 
						
						
							| 21 | 
							
								
							 | 
							picn | 
							 |-  _pi e. CC  | 
						
						
							| 22 | 
							
								21
							 | 
							2timesi | 
							 |-  ( 2 x. _pi ) = ( _pi + _pi )  | 
						
						
							| 23 | 
							
								21 21
							 | 
							subnegi | 
							 |-  ( _pi - -u _pi ) = ( _pi + _pi )  | 
						
						
							| 24 | 
							
								22 2 23
							 | 
							3eqtr4i | 
							 |-  T = ( _pi - -u _pi )  | 
						
						
							| 25 | 
							
								
							 | 
							ssid | 
							 |-  RR C_ RR  | 
						
						
							| 26 | 
							
								25
							 | 
							a1i | 
							 |-  ( ph -> RR C_ RR )  | 
						
						
							| 27 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> x e. RR )  | 
						
						
							| 28 | 
							
								
							 | 
							zre | 
							 |-  ( k e. ZZ -> k e. RR )  | 
						
						
							| 29 | 
							
								28
							 | 
							3ad2ant3 | 
							 |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> k e. RR )  | 
						
						
							| 30 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 31 | 
							
								30 11
							 | 
							remulcli | 
							 |-  ( 2 x. _pi ) e. RR  | 
						
						
							| 32 | 
							
								31
							 | 
							a1i | 
							 |-  ( ph -> ( 2 x. _pi ) e. RR )  | 
						
						
							| 33 | 
							
								2 32
							 | 
							eqeltrid | 
							 |-  ( ph -> T e. RR )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ZZ ) -> T e. RR )  | 
						
						
							| 35 | 
							
								34
							 | 
							3adant2 | 
							 |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> T e. RR )  | 
						
						
							| 36 | 
							
								29 35
							 | 
							remulcld | 
							 |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> ( k x. T ) e. RR )  | 
						
						
							| 37 | 
							
								27 36
							 | 
							readdcld | 
							 |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. RR )  | 
						
						
							| 38 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> ph )  | 
						
						
							| 39 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> k e. ZZ )  | 
						
						
							| 40 | 
							
								
							 | 
							ax-resscn | 
							 |-  RR C_ CC  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							 |-  ( ph -> RR C_ CC )  | 
						
						
							| 42 | 
							
								1 41
							 | 
							fssd | 
							 |-  ( ph -> F : RR --> CC )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ZZ ) -> F : RR --> CC )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> F : RR --> CC )  | 
						
						
							| 45 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> T e. RR )  | 
						
						
							| 46 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> k e. ZZ )  | 
						
						
							| 47 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> x e. RR )  | 
						
						
							| 48 | 
							
								
							 | 
							eleq1w | 
							 |-  ( x = y -> ( x e. RR <-> y e. RR ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							anbi2d | 
							 |-  ( x = y -> ( ( ph /\ x e. RR ) <-> ( ph /\ y e. RR ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = y -> ( x + T ) = ( y + T ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							fveq2d | 
							 |-  ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = y -> ( F ` x ) = ( F ` y ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							eqeq12d | 
							 |-  ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) )  | 
						
						
							| 54 | 
							
								49 53
							 | 
							imbi12d | 
							 |-  ( x = y -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) )  | 
						
						
							| 55 | 
							
								54 3
							 | 
							chvarvv | 
							 |-  ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ad4ant14 | 
							 |-  ( ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) )  | 
						
						
							| 57 | 
							
								44 45 46 47 56
							 | 
							fperiodmul | 
							 |-  ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) )  | 
						
						
							| 58 | 
							
								38 39 27 57
							 | 
							syl21anc | 
							 |-  ( ( ph /\ x e. RR /\ k e. ZZ ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) )  | 
						
						
							| 59 | 
							
								40
							 | 
							a1i | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ CC )  | 
						
						
							| 60 | 
							
								
							 | 
							ioossre | 
							 |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR  | 
						
						
							| 61 | 
							
								60
							 | 
							a1i | 
							 |-  ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR )  | 
						
						
							| 62 | 
							
								1 61
							 | 
							fssresd | 
							 |-  ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR )  | 
						
						
							| 63 | 
							
								62 41
							 | 
							fssd | 
							 |-  ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC )  | 
						
						
							| 65 | 
							
								60
							 | 
							a1i | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR )  | 
						
						
							| 66 | 
							
								42
							 | 
							adantr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> CC )  | 
						
						
							| 67 | 
							
								25
							 | 
							a1i | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ RR )  | 
						
						
							| 68 | 
							
								
							 | 
							eqid | 
							 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )  | 
						
						
							| 69 | 
							
								
							 | 
							tgioo4 | 
							 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )  | 
						
						
							| 70 | 
							
								68 69
							 | 
							dvres | 
							 |-  ( ( ( RR C_ CC /\ F : RR --> CC ) /\ ( RR C_ RR /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 71 | 
							
								59 66 67 65 70
							 | 
							syl22anc | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							dmeqd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							ioontr | 
							 |-  ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							reseq2i | 
							 |-  ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							dmeqi | 
							 |-  dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							a1i | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							cncff | 
							 |-  ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC )  | 
						
						
							| 78 | 
							
								
							 | 
							fdm | 
							 |-  ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 79 | 
							
								8 77 78
							 | 
							3syl | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 80 | 
							
								72 76 79
							 | 
							3eqtrd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							dvcn | 
							 |-  ( ( ( RR C_ CC /\ ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) /\ dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) )  | 
						
						
							| 82 | 
							
								59 64 65 80 81
							 | 
							syl31anc | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) )  | 
						
						
							| 83 | 
							
								65 40
							 | 
							sstrdi | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC )  | 
						
						
							| 84 | 
							
								5
							 | 
							fourierdlem2 | 
							 |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 85 | 
							
								6 84
							 | 
							syl | 
							 |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 86 | 
							
								7 85
							 | 
							mpbid | 
							 |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							simpld | 
							 |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) )  | 
						
						
							| 88 | 
							
								
							 | 
							elmapi | 
							 |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							syl | 
							 |-  ( ph -> Q : ( 0 ... M ) --> RR )  | 
						
						
							| 90 | 
							
								89
							 | 
							adantr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR )  | 
						
						
							| 91 | 
							
								
							 | 
							elfzofz | 
							 |-  ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							adantl | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) )  | 
						
						
							| 93 | 
							
								90 92
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR )  | 
						
						
							| 94 | 
							
								93
							 | 
							rexrd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* )  | 
						
						
							| 95 | 
							
								
							 | 
							fzofzp1 | 
							 |-  ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							adantl | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) )  | 
						
						
							| 97 | 
							
								90 96
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR )  | 
						
						
							| 98 | 
							
								86
							 | 
							simprrd | 
							 |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							r19.21bi | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) )  | 
						
						
							| 100 | 
							
								68 94 97 99
							 | 
							lptioo2cn | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) )  | 
						
						
							| 101 | 
							
								62
							 | 
							adantr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR )  | 
						
						
							| 102 | 
							
								41 42 26
							 | 
							dvbss | 
							 |-  ( ph -> dom ( RR _D F ) C_ RR )  | 
						
						
							| 103 | 
							
								
							 | 
							dvfre | 
							 |-  ( ( F : RR --> RR /\ RR C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR )  | 
						
						
							| 104 | 
							
								1 26 103
							 | 
							syl2anc | 
							 |-  ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR )  | 
						
						
							| 105 | 
							
								86
							 | 
							simprd | 
							 |-  ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							simplld | 
							 |-  ( ph -> ( Q ` 0 ) = -u _pi )  | 
						
						
							| 107 | 
							
								105
							 | 
							simplrd | 
							 |-  ( ph -> ( Q ` M ) = _pi )  | 
						
						
							| 108 | 
							
								8 77
							 | 
							syl | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC )  | 
						
						
							| 109 | 
							
								97
							 | 
							rexrd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* )  | 
						
						
							| 110 | 
							
								68 109 93 99
							 | 
							lptioo1cn | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) )  | 
						
						
							| 111 | 
							
								108 83 110 9 68
							 | 
							ellimciota | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) )  | 
						
						
							| 112 | 
							
								108 83 100 10 68
							 | 
							ellimciota | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 113 | 
							
								28
							 | 
							adantl | 
							 |-  ( ( ph /\ k e. ZZ ) -> k e. RR )  | 
						
						
							| 114 | 
							
								113 34
							 | 
							remulcld | 
							 |-  ( ( ph /\ k e. ZZ ) -> ( k x. T ) e. RR )  | 
						
						
							| 115 | 
							
								43
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> F : RR --> CC )  | 
						
						
							| 116 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> T e. RR )  | 
						
						
							| 117 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> k e. ZZ )  | 
						
						
							| 118 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> t e. RR )  | 
						
						
							| 119 | 
							
								3
							 | 
							ad4ant14 | 
							 |-  ( ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) )  | 
						
						
							| 120 | 
							
								115 116 117 118 119
							 | 
							fperiodmul | 
							 |-  ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> ( F ` ( t + ( k x. T ) ) ) = ( F ` t ) )  | 
						
						
							| 121 | 
							
								
							 | 
							eqid | 
							 |-  ( RR _D F ) = ( RR _D F )  | 
						
						
							| 122 | 
							
								43 114 120 121
							 | 
							fperdvper | 
							 |-  ( ( ( ph /\ k e. ZZ ) /\ t e. dom ( RR _D F ) ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) )  | 
						
						
							| 123 | 
							
								122
							 | 
							an32s | 
							 |-  ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							simpld | 
							 |-  ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. dom ( RR _D F ) )  | 
						
						
							| 125 | 
							
								123
							 | 
							simprd | 
							 |-  ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) )  | 
						
						
							| 126 | 
							
								
							 | 
							fveq2 | 
							 |-  ( j = i -> ( Q ` j ) = ( Q ` i ) )  | 
						
						
							| 127 | 
							
								
							 | 
							oveq1 | 
							 |-  ( j = i -> ( j + 1 ) = ( i + 1 ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							fveq2d | 
							 |-  ( j = i -> ( Q ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) )  | 
						
						
							| 129 | 
							
								126 128
							 | 
							oveq12d | 
							 |-  ( j = i -> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 130 | 
							
								129
							 | 
							cbvmptv | 
							 |-  ( j e. ( 0 ..^ M ) |-> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) = ( i e. ( 0 ..^ M ) |-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 131 | 
							
								
							 | 
							eqid | 
							 |-  ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) ) = ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) )  | 
						
						
							| 132 | 
							
								102 104 13 14 20 24 6 89 106 107 8 111 112 124 125 130 131
							 | 
							fourierdlem71 | 
							 |-  ( ph -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z )  | 
						
						
							| 133 | 
							
								132
							 | 
							adantr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z )  | 
						
						
							| 134 | 
							
								
							 | 
							nfv | 
							 |-  F/ t ( ph /\ i e. ( 0 ..^ M ) )  | 
						
						
							| 135 | 
							
								
							 | 
							nfra1 | 
							 |-  F/ t A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z  | 
						
						
							| 136 | 
							
								134 135
							 | 
							nfan | 
							 |-  F/ t ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z )  | 
						
						
							| 137 | 
							
								71 74
							 | 
							eqtrdi | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) )  | 
						
						
							| 138 | 
							
								137
							 | 
							fveq1d | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) )  | 
						
						
							| 139 | 
							
								
							 | 
							fvres | 
							 |-  ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) )  | 
						
						
							| 140 | 
							
								138 139
							 | 
							sylan9eq | 
							 |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) )  | 
						
						
							| 141 | 
							
								140
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) )  | 
						
						
							| 142 | 
							
								141
							 | 
							adantlr | 
							 |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) )  | 
						
						
							| 143 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z )  | 
						
						
							| 144 | 
							
								
							 | 
							ssdmres | 
							 |-  ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 145 | 
							
								79 144
							 | 
							sylibr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) )  | 
						
						
							| 147 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 148 | 
							
								146 147
							 | 
							sseldd | 
							 |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. dom ( RR _D F ) )  | 
						
						
							| 149 | 
							
								
							 | 
							rspa | 
							 |-  ( ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z /\ t e. dom ( RR _D F ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z )  | 
						
						
							| 150 | 
							
								143 148 149
							 | 
							syl2anc | 
							 |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z )  | 
						
						
							| 151 | 
							
								142 150
							 | 
							eqbrtrd | 
							 |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z )  | 
						
						
							| 152 | 
							
								151
							 | 
							ex | 
							 |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) )  | 
						
						
							| 153 | 
							
								136 152
							 | 
							ralrimi | 
							 |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z )  | 
						
						
							| 154 | 
							
								153
							 | 
							ex | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) )  | 
						
						
							| 155 | 
							
								154
							 | 
							reximdv | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) )  | 
						
						
							| 156 | 
							
								133 155
							 | 
							mpd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z )  | 
						
						
							| 157 | 
							
								93 97 101 80 156
							 | 
							ioodvbdlimc2 | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) )  | 
						
						
							| 158 | 
							
								64 83 100 157 68
							 | 
							ellimciota | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 159 | 
							
								
							 | 
							oveq2 | 
							 |-  ( y = x -> ( _pi - y ) = ( _pi - x ) )  | 
						
						
							| 160 | 
							
								159
							 | 
							oveq1d | 
							 |-  ( y = x -> ( ( _pi - y ) / T ) = ( ( _pi - x ) / T ) )  | 
						
						
							| 161 | 
							
								160
							 | 
							fveq2d | 
							 |-  ( y = x -> ( |_ ` ( ( _pi - y ) / T ) ) = ( |_ ` ( ( _pi - x ) / T ) ) )  | 
						
						
							| 162 | 
							
								161
							 | 
							oveq1d | 
							 |-  ( y = x -> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) = ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) )  | 
						
						
							| 163 | 
							
								162
							 | 
							cbvmptv | 
							 |-  ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) = ( x e. RR |-> ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) )  | 
						
						
							| 164 | 
							
								
							 | 
							id | 
							 |-  ( z = x -> z = x )  | 
						
						
							| 165 | 
							
								
							 | 
							fveq2 | 
							 |-  ( z = x -> ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) = ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) )  | 
						
						
							| 166 | 
							
								164 165
							 | 
							oveq12d | 
							 |-  ( z = x -> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) = ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) )  | 
						
						
							| 167 | 
							
								166
							 | 
							cbvmptv | 
							 |-  ( z e. RR |-> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) ) = ( x e. RR |-> ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) )  | 
						
						
							| 168 | 
							
								13 14 20 5 24 6 7 26 1 37 58 82 158 4 163 167
							 | 
							fourierdlem49 | 
							 |-  ( ph -> ( ( F |` ( -oo (,) X ) ) limCC X ) =/= (/) )  | 
						
						
							| 169 | 
							
								93 97 101 80 156
							 | 
							ioodvbdlimc1 | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) )  | 
						
						
							| 170 | 
							
								64 83 110 169 68
							 | 
							ellimciota | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) )  | 
						
						
							| 171 | 
							
								
							 | 
							biid | 
							 |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) )  | 
						
						
							| 172 | 
							
								13 14 20 5 24 6 7 1 37 58 82 170 4 163 167 171
							 | 
							fourierdlem48 | 
							 |-  ( ph -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) )  | 
						
						
							| 173 | 
							
								168 172
							 | 
							jca | 
							 |-  ( ph -> ( ( ( F |` ( -oo (,) X ) ) limCC X ) =/= (/) /\ ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) )  |