Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem95.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem95.xre |
|- ( ph -> X e. RR ) |
3 |
|
fourierdlem95.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` m ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
4 |
|
fourierdlem95.m |
|- ( ph -> M e. NN ) |
5 |
|
fourierdlem95.v |
|- ( ph -> V e. ( P ` M ) ) |
6 |
|
fourierdlem95.x |
|- ( ph -> X e. ran V ) |
7 |
|
fourierdlem95.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
8 |
|
fourierdlem95.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) |
9 |
|
fourierdlem95.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) |
10 |
|
fourierdlem95.h |
|- H = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
11 |
|
fourierdlem95.k |
|- K = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
12 |
|
fourierdlem95.u |
|- U = ( s e. ( -u _pi [,] _pi ) |-> ( ( H ` s ) x. ( K ` s ) ) ) |
13 |
|
fourierdlem95.s |
|- S = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) |
14 |
|
fourierdlem95.g |
|- G = ( s e. ( -u _pi [,] _pi ) |-> ( ( U ` s ) x. ( S ` s ) ) ) |
15 |
|
fourierdlem95.i |
|- I = ( RR _D F ) |
16 |
|
fourierdlem95.ifn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( I |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) |
17 |
|
fourierdlem95.b |
|- ( ph -> B e. ( ( I |` ( -oo (,) X ) ) limCC X ) ) |
18 |
|
fourierdlem95.c |
|- ( ph -> C e. ( ( I |` ( X (,) +oo ) ) limCC X ) ) |
19 |
|
fourierdlem95.y |
|- ( ph -> Y e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
20 |
|
fourierdlem95.w |
|- ( ph -> W e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
21 |
|
fourierdlem95.admvol |
|- ( ph -> A e. dom vol ) |
22 |
|
fourierdlem95.ass |
|- ( ph -> A C_ ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
23 |
|
fourierlemenplusacver2eqitgdirker.e |
|- E = ( n e. NN |-> ( S. A ( G ` s ) _d s / _pi ) ) |
24 |
|
fourierdlem95.d |
|- D = ( n e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
25 |
|
fourierdlem95.o |
|- ( ph -> O e. RR ) |
26 |
|
fourierdlem95.ifeqo |
|- ( ( ph /\ s e. A ) -> if ( 0 < s , Y , W ) = O ) |
27 |
|
fourierdlem95.itgdirker |
|- ( ( ph /\ n e. NN ) -> S. A ( ( D ` n ) ` s ) _d s = ( 1 / 2 ) ) |
28 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
29 |
22
|
difss2d |
|- ( ph -> A C_ ( -u _pi [,] _pi ) ) |
30 |
29
|
adantr |
|- ( ( ph /\ n e. NN ) -> A C_ ( -u _pi [,] _pi ) ) |
31 |
30
|
sselda |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> s e. ( -u _pi [,] _pi ) ) |
32 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> F : RR --> RR ) |
33 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. RR ) |
34 |
|
ioossre |
|- ( X (,) +oo ) C_ RR |
35 |
34
|
a1i |
|- ( ph -> ( X (,) +oo ) C_ RR ) |
36 |
1 35
|
fssresd |
|- ( ph -> ( F |` ( X (,) +oo ) ) : ( X (,) +oo ) --> RR ) |
37 |
|
ioosscn |
|- ( X (,) +oo ) C_ CC |
38 |
37
|
a1i |
|- ( ph -> ( X (,) +oo ) C_ CC ) |
39 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
40 |
|
pnfxr |
|- +oo e. RR* |
41 |
40
|
a1i |
|- ( ph -> +oo e. RR* ) |
42 |
2
|
ltpnfd |
|- ( ph -> X < +oo ) |
43 |
39 41 2 42
|
lptioo1cn |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) +oo ) ) ) |
44 |
36 38 43 19
|
limcrecl |
|- ( ph -> Y e. RR ) |
45 |
44
|
adantr |
|- ( ( ph /\ n e. NN ) -> Y e. RR ) |
46 |
|
ioossre |
|- ( -oo (,) X ) C_ RR |
47 |
46
|
a1i |
|- ( ph -> ( -oo (,) X ) C_ RR ) |
48 |
1 47
|
fssresd |
|- ( ph -> ( F |` ( -oo (,) X ) ) : ( -oo (,) X ) --> RR ) |
49 |
|
ioosscn |
|- ( -oo (,) X ) C_ CC |
50 |
49
|
a1i |
|- ( ph -> ( -oo (,) X ) C_ CC ) |
51 |
|
mnfxr |
|- -oo e. RR* |
52 |
51
|
a1i |
|- ( ph -> -oo e. RR* ) |
53 |
2
|
mnfltd |
|- ( ph -> -oo < X ) |
54 |
39 52 2 53
|
lptioo2cn |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( -oo (,) X ) ) ) |
55 |
48 50 54 20
|
limcrecl |
|- ( ph -> W e. RR ) |
56 |
55
|
adantr |
|- ( ( ph /\ n e. NN ) -> W e. RR ) |
57 |
28
|
nnred |
|- ( ( ph /\ n e. NN ) -> n e. RR ) |
58 |
32 33 45 56 10 11 12 57 13 14
|
fourierdlem67 |
|- ( ( ph /\ n e. NN ) -> G : ( -u _pi [,] _pi ) --> RR ) |
59 |
58
|
ffvelrnda |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] _pi ) ) -> ( G ` s ) e. RR ) |
60 |
31 59
|
syldan |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( G ` s ) e. RR ) |
61 |
21
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. dom vol ) |
62 |
58
|
feqmptd |
|- ( ( ph /\ n e. NN ) -> G = ( s e. ( -u _pi [,] _pi ) |-> ( G ` s ) ) ) |
63 |
6
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. ran V ) |
64 |
19
|
adantr |
|- ( ( ph /\ n e. NN ) -> Y e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
65 |
20
|
adantr |
|- ( ( ph /\ n e. NN ) -> W e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
66 |
4
|
adantr |
|- ( ( ph /\ n e. NN ) -> M e. NN ) |
67 |
5
|
adantr |
|- ( ( ph /\ n e. NN ) -> V e. ( P ` M ) ) |
68 |
7
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
69 |
8
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) |
70 |
9
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) |
71 |
|
fveq2 |
|- ( j = i -> ( V ` j ) = ( V ` i ) ) |
72 |
71
|
oveq1d |
|- ( j = i -> ( ( V ` j ) - X ) = ( ( V ` i ) - X ) ) |
73 |
72
|
cbvmptv |
|- ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) |
74 |
|
eqid |
|- ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` m ) = _pi ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` m ) = _pi ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
75 |
16
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( I |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) |
76 |
17
|
adantr |
|- ( ( ph /\ n e. NN ) -> B e. ( ( I |` ( -oo (,) X ) ) limCC X ) ) |
77 |
18
|
adantr |
|- ( ( ph /\ n e. NN ) -> C e. ( ( I |` ( X (,) +oo ) ) limCC X ) ) |
78 |
3 32 63 64 65 10 11 12 57 13 14 66 67 68 69 70 73 74 15 75 76 77
|
fourierdlem88 |
|- ( ( ph /\ n e. NN ) -> G e. L^1 ) |
79 |
62 78
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] _pi ) |-> ( G ` s ) ) e. L^1 ) |
80 |
30 61 59 79
|
iblss |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( G ` s ) ) e. L^1 ) |
81 |
60 80
|
itgrecl |
|- ( ( ph /\ n e. NN ) -> S. A ( G ` s ) _d s e. RR ) |
82 |
|
pire |
|- _pi e. RR |
83 |
82
|
a1i |
|- ( ( ph /\ n e. NN ) -> _pi e. RR ) |
84 |
|
pipos |
|- 0 < _pi |
85 |
82 84
|
gt0ne0ii |
|- _pi =/= 0 |
86 |
85
|
a1i |
|- ( ( ph /\ n e. NN ) -> _pi =/= 0 ) |
87 |
81 83 86
|
redivcld |
|- ( ( ph /\ n e. NN ) -> ( S. A ( G ` s ) _d s / _pi ) e. RR ) |
88 |
23
|
fvmpt2 |
|- ( ( n e. NN /\ ( S. A ( G ` s ) _d s / _pi ) e. RR ) -> ( E ` n ) = ( S. A ( G ` s ) _d s / _pi ) ) |
89 |
28 87 88
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( E ` n ) = ( S. A ( G ` s ) _d s / _pi ) ) |
90 |
25
|
recnd |
|- ( ph -> O e. CC ) |
91 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
92 |
|
2ne0 |
|- 2 =/= 0 |
93 |
92
|
a1i |
|- ( ph -> 2 =/= 0 ) |
94 |
90 91 93
|
divrecd |
|- ( ph -> ( O / 2 ) = ( O x. ( 1 / 2 ) ) ) |
95 |
94
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( O / 2 ) = ( O x. ( 1 / 2 ) ) ) |
96 |
27
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> ( 1 / 2 ) = S. A ( ( D ` n ) ` s ) _d s ) |
97 |
96
|
oveq2d |
|- ( ( ph /\ n e. NN ) -> ( O x. ( 1 / 2 ) ) = ( O x. S. A ( ( D ` n ) ` s ) _d s ) ) |
98 |
95 97
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( O / 2 ) = ( O x. S. A ( ( D ` n ) ` s ) _d s ) ) |
99 |
89 98
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( ( E ` n ) + ( O / 2 ) ) = ( ( S. A ( G ` s ) _d s / _pi ) + ( O x. S. A ( ( D ` n ) ` s ) _d s ) ) ) |
100 |
22
|
sselda |
|- ( ( ph /\ s e. A ) -> s e. ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
101 |
100
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> s e. ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
102 |
|
eqid |
|- ( ( -u _pi [,] _pi ) \ { 0 } ) = ( ( -u _pi [,] _pi ) \ { 0 } ) |
103 |
1 2 44 55 24 10 11 12 13 14 102
|
fourierdlem66 |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi [,] _pi ) \ { 0 } ) ) -> ( G ` s ) = ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
104 |
101 103
|
syldan |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( G ` s ) = ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
105 |
104
|
itgeq2dv |
|- ( ( ph /\ n e. NN ) -> S. A ( G ` s ) _d s = S. A ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) _d s ) |
106 |
105
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( S. A ( G ` s ) _d s / _pi ) = ( S. A ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) _d s / _pi ) ) |
107 |
83
|
recnd |
|- ( ( ph /\ n e. NN ) -> _pi e. CC ) |
108 |
1
|
adantr |
|- ( ( ph /\ s e. A ) -> F : RR --> RR ) |
109 |
2
|
adantr |
|- ( ( ph /\ s e. A ) -> X e. RR ) |
110 |
|
difss |
|- ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( -u _pi [,] _pi ) |
111 |
82
|
renegcli |
|- -u _pi e. RR |
112 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
113 |
111 82 112
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
114 |
110 113
|
sstri |
|- ( ( -u _pi [,] _pi ) \ { 0 } ) C_ RR |
115 |
114 100
|
sselid |
|- ( ( ph /\ s e. A ) -> s e. RR ) |
116 |
109 115
|
readdcld |
|- ( ( ph /\ s e. A ) -> ( X + s ) e. RR ) |
117 |
108 116
|
ffvelrnd |
|- ( ( ph /\ s e. A ) -> ( F ` ( X + s ) ) e. RR ) |
118 |
44 55
|
ifcld |
|- ( ph -> if ( 0 < s , Y , W ) e. RR ) |
119 |
118
|
adantr |
|- ( ( ph /\ s e. A ) -> if ( 0 < s , Y , W ) e. RR ) |
120 |
117 119
|
resubcld |
|- ( ( ph /\ s e. A ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. RR ) |
121 |
120
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. RR ) |
122 |
28
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> n e. NN ) |
123 |
115
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> s e. RR ) |
124 |
24
|
dirkerre |
|- ( ( n e. NN /\ s e. RR ) -> ( ( D ` n ) ` s ) e. RR ) |
125 |
122 123 124
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( D ` n ) ` s ) e. RR ) |
126 |
121 125
|
remulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) e. RR ) |
127 |
104
|
eqcomd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) = ( G ` s ) ) |
128 |
127
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) / _pi ) = ( ( G ` s ) / _pi ) ) |
129 |
|
picn |
|- _pi e. CC |
130 |
129
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> _pi e. CC ) |
131 |
126
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) e. CC ) |
132 |
85
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> _pi =/= 0 ) |
133 |
130 131 130 132
|
div23d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) / _pi ) = ( ( _pi / _pi ) x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
134 |
60
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( G ` s ) e. CC ) |
135 |
134 130 132
|
divrec2d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( G ` s ) / _pi ) = ( ( 1 / _pi ) x. ( G ` s ) ) ) |
136 |
128 133 135
|
3eqtr3rd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( 1 / _pi ) x. ( G ` s ) ) = ( ( _pi / _pi ) x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
137 |
129 85
|
dividi |
|- ( _pi / _pi ) = 1 |
138 |
137
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( _pi / _pi ) = 1 ) |
139 |
138
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( _pi / _pi ) x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) = ( 1 x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
140 |
131
|
mulid2d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( 1 x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) |
141 |
136 139 140
|
3eqtrrd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) = ( ( 1 / _pi ) x. ( G ` s ) ) ) |
142 |
141
|
mpteq2dva |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) = ( s e. A |-> ( ( 1 / _pi ) x. ( G ` s ) ) ) ) |
143 |
107 86
|
reccld |
|- ( ( ph /\ n e. NN ) -> ( 1 / _pi ) e. CC ) |
144 |
143 60 80
|
iblmulc2 |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( ( 1 / _pi ) x. ( G ` s ) ) ) e. L^1 ) |
145 |
142 144
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) |
146 |
107 126 145
|
itgmulc2 |
|- ( ( ph /\ n e. NN ) -> ( _pi x. S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) = S. A ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) _d s ) |
147 |
146
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> S. A ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) _d s = ( _pi x. S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) |
148 |
147
|
oveq1d |
|- ( ( ph /\ n e. NN ) -> ( S. A ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) _d s / _pi ) = ( ( _pi x. S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) / _pi ) ) |
149 |
126 145
|
itgcl |
|- ( ( ph /\ n e. NN ) -> S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s e. CC ) |
150 |
149 107 86
|
divcan3d |
|- ( ( ph /\ n e. NN ) -> ( ( _pi x. S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) / _pi ) = S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
151 |
106 148 150
|
3eqtrd |
|- ( ( ph /\ n e. NN ) -> ( S. A ( G ` s ) _d s / _pi ) = S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
152 |
90
|
adantr |
|- ( ( ph /\ n e. NN ) -> O e. CC ) |
153 |
113
|
sseli |
|- ( s e. ( -u _pi [,] _pi ) -> s e. RR ) |
154 |
153 124
|
sylan2 |
|- ( ( n e. NN /\ s e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) |
155 |
154
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) |
156 |
111
|
a1i |
|- ( ( ph /\ n e. NN ) -> -u _pi e. RR ) |
157 |
|
ax-resscn |
|- RR C_ CC |
158 |
157
|
a1i |
|- ( n e. NN -> RR C_ CC ) |
159 |
|
ssid |
|- CC C_ CC |
160 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( -u _pi [,] _pi ) -cn-> RR ) C_ ( ( -u _pi [,] _pi ) -cn-> CC ) ) |
161 |
158 159 160
|
sylancl |
|- ( n e. NN -> ( ( -u _pi [,] _pi ) -cn-> RR ) C_ ( ( -u _pi [,] _pi ) -cn-> CC ) ) |
162 |
|
eqid |
|- ( s e. RR |-> ( ( D ` n ) ` s ) ) = ( s e. RR |-> ( ( D ` n ) ` s ) ) |
163 |
24
|
dirkerf |
|- ( n e. NN -> ( D ` n ) : RR --> RR ) |
164 |
163
|
feqmptd |
|- ( n e. NN -> ( D ` n ) = ( s e. RR |-> ( ( D ` n ) ` s ) ) ) |
165 |
24
|
dirkercncf |
|- ( n e. NN -> ( D ` n ) e. ( RR -cn-> RR ) ) |
166 |
164 165
|
eqeltrrd |
|- ( n e. NN -> ( s e. RR |-> ( ( D ` n ) ` s ) ) e. ( RR -cn-> RR ) ) |
167 |
113
|
a1i |
|- ( n e. NN -> ( -u _pi [,] _pi ) C_ RR ) |
168 |
|
ssid |
|- RR C_ RR |
169 |
168
|
a1i |
|- ( n e. NN -> RR C_ RR ) |
170 |
162 166 167 169 154
|
cncfmptssg |
|- ( n e. NN -> ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. ( ( -u _pi [,] _pi ) -cn-> RR ) ) |
171 |
161 170
|
sseldd |
|- ( n e. NN -> ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. ( ( -u _pi [,] _pi ) -cn-> CC ) ) |
172 |
171
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. ( ( -u _pi [,] _pi ) -cn-> CC ) ) |
173 |
|
cniccibl |
|- ( ( -u _pi e. RR /\ _pi e. RR /\ ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. ( ( -u _pi [,] _pi ) -cn-> CC ) ) -> ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. L^1 ) |
174 |
156 83 172 173
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] _pi ) |-> ( ( D ` n ) ` s ) ) e. L^1 ) |
175 |
30 61 155 174
|
iblss |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( ( D ` n ) ` s ) ) e. L^1 ) |
176 |
152 125 175
|
itgmulc2 |
|- ( ( ph /\ n e. NN ) -> ( O x. S. A ( ( D ` n ) ` s ) _d s ) = S. A ( O x. ( ( D ` n ) ` s ) ) _d s ) |
177 |
151 176
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( ( S. A ( G ` s ) _d s / _pi ) + ( O x. S. A ( ( D ` n ) ` s ) _d s ) ) = ( S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s + S. A ( O x. ( ( D ` n ) ` s ) ) _d s ) ) |
178 |
25
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> O e. RR ) |
179 |
178 125
|
remulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( O x. ( ( D ` n ) ` s ) ) e. RR ) |
180 |
152 125 175
|
iblmulc2 |
|- ( ( ph /\ n e. NN ) -> ( s e. A |-> ( O x. ( ( D ` n ) ` s ) ) ) e. L^1 ) |
181 |
126 145 179 180
|
itgadd |
|- ( ( ph /\ n e. NN ) -> S. A ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( O x. ( ( D ` n ) ` s ) ) ) _d s = ( S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s + S. A ( O x. ( ( D ` n ) ` s ) ) _d s ) ) |
182 |
26
|
eqcomd |
|- ( ( ph /\ s e. A ) -> O = if ( 0 < s , Y , W ) ) |
183 |
182
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> O = if ( 0 < s , Y , W ) ) |
184 |
183
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( O x. ( ( D ` n ) ` s ) ) = ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) |
185 |
184
|
oveq2d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( O x. ( ( D ` n ) ` s ) ) ) = ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) ) |
186 |
117
|
recnd |
|- ( ( ph /\ s e. A ) -> ( F ` ( X + s ) ) e. CC ) |
187 |
186
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( F ` ( X + s ) ) e. CC ) |
188 |
119
|
recnd |
|- ( ( ph /\ s e. A ) -> if ( 0 < s , Y , W ) e. CC ) |
189 |
188
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> if ( 0 < s , Y , W ) e. CC ) |
190 |
125
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( D ` n ) ` s ) e. CC ) |
191 |
187 189 190
|
subdird |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) = ( ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) - ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) ) |
192 |
191
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) = ( ( ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) - ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) + ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) ) |
193 |
187 190
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) |
194 |
189 190
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) e. CC ) |
195 |
193 194
|
npcand |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) - ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) + ( if ( 0 < s , Y , W ) x. ( ( D ` n ) ` s ) ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
196 |
185 192 195
|
3eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( O x. ( ( D ` n ) ` s ) ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
197 |
196
|
itgeq2dv |
|- ( ( ph /\ n e. NN ) -> S. A ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) + ( O x. ( ( D ` n ) ` s ) ) ) _d s = S. A ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
198 |
181 197
|
eqtr3d |
|- ( ( ph /\ n e. NN ) -> ( S. A ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) _d s + S. A ( O x. ( ( D ` n ) ` s ) ) _d s ) = S. A ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
199 |
99 177 198
|
3eqtrd |
|- ( ( ph /\ n e. NN ) -> ( ( E ` n ) + ( O / 2 ) ) = S. A ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |