Metamath Proof Explorer


Theorem fourierdlem98

Description: F is continuous on the intervals induced by the moved partition V . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem98.f
|- ( ph -> F : RR --> RR )
fourierdlem98.p
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } )
fourierdlem98.t
|- T = ( B - A )
fourierdlem98.m
|- ( ph -> M e. NN )
fourierdlem98.q
|- ( ph -> Q e. ( P ` M ) )
fourierdlem98.fper
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) )
fourierdlem98.qcn
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) )
fourierdlem98.c
|- ( ph -> C e. RR )
fourierdlem98.d
|- ( ph -> D e. ( C (,) +oo ) )
fourierdlem98.j
|- ( ph -> J e. ( 0 ..^ ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) )
fourierdlem98.v
|- V = ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) )
Assertion fourierdlem98
|- ( ph -> ( F |` ( ( V ` J ) (,) ( V ` ( J + 1 ) ) ) ) e. ( ( ( V ` J ) (,) ( V ` ( J + 1 ) ) ) -cn-> CC ) )

Proof

Step Hyp Ref Expression
1 fourierdlem98.f
 |-  ( ph -> F : RR --> RR )
2 fourierdlem98.p
 |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } )
3 fourierdlem98.t
 |-  T = ( B - A )
4 fourierdlem98.m
 |-  ( ph -> M e. NN )
5 fourierdlem98.q
 |-  ( ph -> Q e. ( P ` M ) )
6 fourierdlem98.fper
 |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) )
7 fourierdlem98.qcn
 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) )
8 fourierdlem98.c
 |-  ( ph -> C e. RR )
9 fourierdlem98.d
 |-  ( ph -> D e. ( C (,) +oo ) )
10 fourierdlem98.j
 |-  ( ph -> J e. ( 0 ..^ ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) )
11 fourierdlem98.v
 |-  V = ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) )
12 ax-resscn
 |-  RR C_ CC
13 12 a1i
 |-  ( ph -> RR C_ CC )
14 1 13 fssd
 |-  ( ph -> F : RR --> CC )
15 eqid
 |-  ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = C /\ ( p ` m ) = D ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = C /\ ( p ` m ) = D ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } )
16 oveq1
 |-  ( z = y -> ( z + ( l x. T ) ) = ( y + ( l x. T ) ) )
17 16 eleq1d
 |-  ( z = y -> ( ( z + ( l x. T ) ) e. ran Q <-> ( y + ( l x. T ) ) e. ran Q ) )
18 17 rexbidv
 |-  ( z = y -> ( E. l e. ZZ ( z + ( l x. T ) ) e. ran Q <-> E. l e. ZZ ( y + ( l x. T ) ) e. ran Q ) )
19 18 cbvrabv
 |-  { z e. ( C [,] D ) | E. l e. ZZ ( z + ( l x. T ) ) e. ran Q } = { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q }
20 19 uneq2i
 |-  ( { C , D } u. { z e. ( C [,] D ) | E. l e. ZZ ( z + ( l x. T ) ) e. ran Q } ) = ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } )
21 20 eqcomi
 |-  ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) = ( { C , D } u. { z e. ( C [,] D ) | E. l e. ZZ ( z + ( l x. T ) ) e. ran Q } )
22 oveq1
 |-  ( k = l -> ( k x. T ) = ( l x. T ) )
23 22 oveq2d
 |-  ( k = l -> ( y + ( k x. T ) ) = ( y + ( l x. T ) ) )
24 23 eleq1d
 |-  ( k = l -> ( ( y + ( k x. T ) ) e. ran Q <-> ( y + ( l x. T ) ) e. ran Q ) )
25 24 cbvrexvw
 |-  ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. l e. ZZ ( y + ( l x. T ) ) e. ran Q )
26 25 a1i
 |-  ( y e. ( C [,] D ) -> ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. l e. ZZ ( y + ( l x. T ) ) e. ran Q ) )
27 26 rabbiia
 |-  { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q }
28 27 uneq2i
 |-  ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } )
29 28 fveq2i
 |-  ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) = ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) )
30 29 oveq1i
 |-  ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) = ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) - 1 )
31 oveq1
 |-  ( l = h -> ( l x. T ) = ( h x. T ) )
32 31 oveq2d
 |-  ( l = h -> ( y + ( l x. T ) ) = ( y + ( h x. T ) ) )
33 32 eleq1d
 |-  ( l = h -> ( ( y + ( l x. T ) ) e. ran Q <-> ( y + ( h x. T ) ) e. ran Q ) )
34 33 cbvrexvw
 |-  ( E. l e. ZZ ( y + ( l x. T ) ) e. ran Q <-> E. h e. ZZ ( y + ( h x. T ) ) e. ran Q )
35 34 a1i
 |-  ( y e. ( C [,] D ) -> ( E. l e. ZZ ( y + ( l x. T ) ) e. ran Q <-> E. h e. ZZ ( y + ( h x. T ) ) e. ran Q ) )
36 35 rabbiia
 |-  { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } = { y e. ( C [,] D ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q }
37 36 uneq2i
 |-  ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) = ( { C , D } u. { y e. ( C [,] D ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } )
38 isoeq5
 |-  ( ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) = ( { C , D } u. { y e. ( C [,] D ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) ) )
39 37 38 ax-mp
 |-  ( g Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) )
40 39 iotabii
 |-  ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) ) = ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) )
41 isoeq1
 |-  ( f = g -> ( f Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) ) )
42 41 cbviotavw
 |-  ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) ) = ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) )
43 40 42 11 3eqtr4ri
 |-  V = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { C , D } u. { y e. ( C [,] D ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { C , D } u. { y e. ( C [,] D ) | E. l e. ZZ ( y + ( l x. T ) ) e. ran Q } ) ) )
44 id
 |-  ( v = x -> v = x )
45 oveq2
 |-  ( v = x -> ( B - v ) = ( B - x ) )
46 45 oveq1d
 |-  ( v = x -> ( ( B - v ) / T ) = ( ( B - x ) / T ) )
47 46 fveq2d
 |-  ( v = x -> ( |_ ` ( ( B - v ) / T ) ) = ( |_ ` ( ( B - x ) / T ) ) )
48 47 oveq1d
 |-  ( v = x -> ( ( |_ ` ( ( B - v ) / T ) ) x. T ) = ( ( |_ ` ( ( B - x ) / T ) ) x. T ) )
49 44 48 oveq12d
 |-  ( v = x -> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) = ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) )
50 49 cbvmptv
 |-  ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) )
51 eqeq1
 |-  ( u = z -> ( u = B <-> z = B ) )
52 id
 |-  ( u = z -> u = z )
53 51 52 ifbieq2d
 |-  ( u = z -> if ( u = B , A , u ) = if ( z = B , A , z ) )
54 53 cbvmptv
 |-  ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) = ( z e. ( A (,] B ) |-> if ( z = B , A , z ) )
55 eqid
 |-  ( ( V ` ( J + 1 ) ) - ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) ) = ( ( V ` ( J + 1 ) ) - ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) )
56 eqid
 |-  ( F |` ( ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` J ) ) ) (,) ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) ) ) = ( F |` ( ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` J ) ) ) (,) ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) ) )
57 eqid
 |-  ( z e. ( ( ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` J ) ) ) + ( ( V ` ( J + 1 ) ) - ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) ) ) (,) ( ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) + ( ( V ` ( J + 1 ) ) - ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) ) ) ) |-> ( ( F |` ( ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` J ) ) ) (,) ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) ) ) ` ( z - ( ( V ` ( J + 1 ) ) - ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) ) ) ) ) = ( z e. ( ( ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` J ) ) ) + ( ( V ` ( J + 1 ) ) - ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) ) ) (,) ( ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) + ( ( V ` ( J + 1 ) ) - ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) ) ) ) |-> ( ( F |` ( ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` J ) ) ) (,) ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) ) ) ` ( z - ( ( V ` ( J + 1 ) ) - ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` ( V ` ( J + 1 ) ) ) ) ) ) )
58 fveq2
 |-  ( i = t -> ( Q ` i ) = ( Q ` t ) )
59 58 breq1d
 |-  ( i = t -> ( ( Q ` i ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) ) <-> ( Q ` t ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) ) ) )
60 59 cbvrabv
 |-  { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) ) } = { t e. ( 0 ..^ M ) | ( Q ` t ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) ) }
61 fveq2
 |-  ( w = x -> ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` w ) = ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) )
62 61 fveq2d
 |-  ( w = x -> ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` w ) ) = ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) ) )
63 62 eqcomd
 |-  ( w = x -> ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) ) = ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` w ) ) )
64 63 breq2d
 |-  ( w = x -> ( ( Q ` t ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) ) <-> ( Q ` t ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` w ) ) ) )
65 64 rabbidv
 |-  ( w = x -> { t e. ( 0 ..^ M ) | ( Q ` t ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) ) } = { t e. ( 0 ..^ M ) | ( Q ` t ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` w ) ) } )
66 60 65 eqtr2id
 |-  ( w = x -> { t e. ( 0 ..^ M ) | ( Q ` t ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` w ) ) } = { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) ) } )
67 66 supeq1d
 |-  ( w = x -> sup ( { t e. ( 0 ..^ M ) | ( Q ` t ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` w ) ) } , RR , < ) = sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) ) } , RR , < ) )
68 67 cbvmptv
 |-  ( w e. RR |-> sup ( { t e. ( 0 ..^ M ) | ( Q ` t ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` w ) ) } , RR , < ) ) = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( ( u e. ( A (,] B ) |-> if ( u = B , A , u ) ) ` ( ( v e. RR |-> ( v + ( ( |_ ` ( ( B - v ) / T ) ) x. T ) ) ) ` x ) ) } , RR , < ) )
69 2 3 4 5 14 6 7 8 9 15 21 30 43 50 54 10 55 56 57 68 fourierdlem90
 |-  ( ph -> ( F |` ( ( V ` J ) (,) ( V ` ( J + 1 ) ) ) ) e. ( ( ( V ` J ) (,) ( V ` ( J + 1 ) ) ) -cn-> CC ) )