Metamath Proof Explorer


Theorem fouriersw

Description: Fourier series convergence, for the square wave function. Where F is discontinuous, the series converges to 0 , the average value of the left and the right limits. Notice that F is an odd function and its Fourier expansion has only sine terms (coefficients for cosine terms are zero). (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fouriersw.t
|- T = ( 2 x. _pi )
fouriersw.f
|- F = ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) )
fouriersw.x
|- X e. RR
fouriersw.z
|- S = ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) )
fouriersw.y
|- Y = if ( ( X mod _pi ) = 0 , 0 , ( F ` X ) )
Assertion fouriersw
|- ( ( ( 4 / _pi ) x. sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = Y /\ seq 1 ( + , S ) ~~> ( ( _pi / 4 ) x. Y ) )

Proof

Step Hyp Ref Expression
1 fouriersw.t
 |-  T = ( 2 x. _pi )
2 fouriersw.f
 |-  F = ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) )
3 fouriersw.x
 |-  X e. RR
4 fouriersw.z
 |-  S = ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) )
5 fouriersw.y
 |-  Y = if ( ( X mod _pi ) = 0 , 0 , ( F ` X ) )
6 nnuz
 |-  NN = ( ZZ>= ` 1 )
7 1zzd
 |-  ( T. -> 1 e. ZZ )
8 eqidd
 |-  ( k e. NN -> ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) = ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) )
9 oveq2
 |-  ( n = k -> ( 2 x. n ) = ( 2 x. k ) )
10 9 oveq1d
 |-  ( n = k -> ( ( 2 x. n ) - 1 ) = ( ( 2 x. k ) - 1 ) )
11 10 oveq1d
 |-  ( n = k -> ( ( ( 2 x. n ) - 1 ) x. X ) = ( ( ( 2 x. k ) - 1 ) x. X ) )
12 11 fveq2d
 |-  ( n = k -> ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) = ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) )
13 12 10 oveq12d
 |-  ( n = k -> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) = ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) )
14 13 adantl
 |-  ( ( k e. NN /\ n = k ) -> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) = ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) )
15 id
 |-  ( k e. NN -> k e. NN )
16 ovex
 |-  ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) e. _V
17 16 a1i
 |-  ( k e. NN -> ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) e. _V )
18 8 14 15 17 fvmptd
 |-  ( k e. NN -> ( ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ` k ) = ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) )
19 18 adantl
 |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ` k ) = ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) )
20 2z
 |-  2 e. ZZ
21 20 a1i
 |-  ( k e. NN -> 2 e. ZZ )
22 nnz
 |-  ( k e. NN -> k e. ZZ )
23 21 22 zmulcld
 |-  ( k e. NN -> ( 2 x. k ) e. ZZ )
24 1zzd
 |-  ( k e. NN -> 1 e. ZZ )
25 23 24 zsubcld
 |-  ( k e. NN -> ( ( 2 x. k ) - 1 ) e. ZZ )
26 25 zcnd
 |-  ( k e. NN -> ( ( 2 x. k ) - 1 ) e. CC )
27 3 recni
 |-  X e. CC
28 27 a1i
 |-  ( k e. NN -> X e. CC )
29 26 28 mulcld
 |-  ( k e. NN -> ( ( ( 2 x. k ) - 1 ) x. X ) e. CC )
30 29 sincld
 |-  ( k e. NN -> ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) e. CC )
31 0red
 |-  ( k e. NN -> 0 e. RR )
32 2re
 |-  2 e. RR
33 32 a1i
 |-  ( k e. NN -> 2 e. RR )
34 1red
 |-  ( k e. NN -> 1 e. RR )
35 33 34 remulcld
 |-  ( k e. NN -> ( 2 x. 1 ) e. RR )
36 35 34 resubcld
 |-  ( k e. NN -> ( ( 2 x. 1 ) - 1 ) e. RR )
37 25 zred
 |-  ( k e. NN -> ( ( 2 x. k ) - 1 ) e. RR )
38 0lt1
 |-  0 < 1
39 2t1e2
 |-  ( 2 x. 1 ) = 2
40 39 oveq1i
 |-  ( ( 2 x. 1 ) - 1 ) = ( 2 - 1 )
41 2m1e1
 |-  ( 2 - 1 ) = 1
42 40 41 eqtr2i
 |-  1 = ( ( 2 x. 1 ) - 1 )
43 38 42 breqtri
 |-  0 < ( ( 2 x. 1 ) - 1 )
44 43 a1i
 |-  ( k e. NN -> 0 < ( ( 2 x. 1 ) - 1 ) )
45 23 zred
 |-  ( k e. NN -> ( 2 x. k ) e. RR )
46 nnre
 |-  ( k e. NN -> k e. RR )
47 0le2
 |-  0 <_ 2
48 47 a1i
 |-  ( k e. NN -> 0 <_ 2 )
49 nnge1
 |-  ( k e. NN -> 1 <_ k )
50 34 46 33 48 49 lemul2ad
 |-  ( k e. NN -> ( 2 x. 1 ) <_ ( 2 x. k ) )
51 35 45 34 50 lesub1dd
 |-  ( k e. NN -> ( ( 2 x. 1 ) - 1 ) <_ ( ( 2 x. k ) - 1 ) )
52 31 36 37 44 51 ltletrd
 |-  ( k e. NN -> 0 < ( ( 2 x. k ) - 1 ) )
53 31 52 gtned
 |-  ( k e. NN -> ( ( 2 x. k ) - 1 ) =/= 0 )
54 30 26 53 divcld
 |-  ( k e. NN -> ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) e. CC )
55 54 adantl
 |-  ( ( T. /\ k e. NN ) -> ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) e. CC )
56 picn
 |-  _pi e. CC
57 56 a1i
 |-  ( T. -> _pi e. CC )
58 4cn
 |-  4 e. CC
59 58 a1i
 |-  ( T. -> 4 e. CC )
60 4ne0
 |-  4 =/= 0
61 60 a1i
 |-  ( T. -> 4 =/= 0 )
62 57 59 61 divcld
 |-  ( T. -> ( _pi / 4 ) e. CC )
63 eqid
 |-  ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) = ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) )
64 0cnd
 |-  ( n e. NN -> 0 e. CC )
65 58 a1i
 |-  ( n e. NN -> 4 e. CC )
66 nncn
 |-  ( n e. NN -> n e. CC )
67 mulcl
 |-  ( ( n e. CC /\ _pi e. CC ) -> ( n x. _pi ) e. CC )
68 66 56 67 sylancl
 |-  ( n e. NN -> ( n x. _pi ) e. CC )
69 56 a1i
 |-  ( n e. NN -> _pi e. CC )
70 nnne0
 |-  ( n e. NN -> n =/= 0 )
71 0re
 |-  0 e. RR
72 pipos
 |-  0 < _pi
73 71 72 gtneii
 |-  _pi =/= 0
74 73 a1i
 |-  ( n e. NN -> _pi =/= 0 )
75 66 69 70 74 mulne0d
 |-  ( n e. NN -> ( n x. _pi ) =/= 0 )
76 65 68 75 divcld
 |-  ( n e. NN -> ( 4 / ( n x. _pi ) ) e. CC )
77 27 a1i
 |-  ( n e. NN -> X e. CC )
78 66 77 mulcld
 |-  ( n e. NN -> ( n x. X ) e. CC )
79 78 sincld
 |-  ( n e. NN -> ( sin ` ( n x. X ) ) e. CC )
80 76 79 mulcld
 |-  ( n e. NN -> ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) e. CC )
81 64 80 ifcld
 |-  ( n e. NN -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) e. CC )
82 63 81 fmpti
 |-  ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) : NN --> CC
83 82 a1i
 |-  ( T. -> ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) : NN --> CC )
84 eqidd
 |-  ( k e. NN -> ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) = ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) )
85 breq2
 |-  ( n = k -> ( 2 || n <-> 2 || k ) )
86 oveq1
 |-  ( n = k -> ( n x. _pi ) = ( k x. _pi ) )
87 86 oveq2d
 |-  ( n = k -> ( 4 / ( n x. _pi ) ) = ( 4 / ( k x. _pi ) ) )
88 oveq1
 |-  ( n = k -> ( n x. X ) = ( k x. X ) )
89 88 fveq2d
 |-  ( n = k -> ( sin ` ( n x. X ) ) = ( sin ` ( k x. X ) ) )
90 87 89 oveq12d
 |-  ( n = k -> ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) = ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) )
91 85 90 ifbieq2d
 |-  ( n = k -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) )
92 91 adantl
 |-  ( ( k e. NN /\ n = k ) -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) )
93 c0ex
 |-  0 e. _V
94 ovex
 |-  ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) e. _V
95 93 94 ifex
 |-  if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) e. _V
96 95 a1i
 |-  ( k e. NN -> if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) e. _V )
97 84 92 15 96 fvmptd
 |-  ( k e. NN -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) )
98 97 adantr
 |-  ( ( k e. NN /\ ( k / 2 ) e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) )
99 simpr
 |-  ( ( k e. NN /\ ( k / 2 ) e. NN ) -> ( k / 2 ) e. NN )
100 simpl
 |-  ( ( k e. NN /\ ( k / 2 ) e. NN ) -> k e. NN )
101 2nn
 |-  2 e. NN
102 nndivdvds
 |-  ( ( k e. NN /\ 2 e. NN ) -> ( 2 || k <-> ( k / 2 ) e. NN ) )
103 100 101 102 sylancl
 |-  ( ( k e. NN /\ ( k / 2 ) e. NN ) -> ( 2 || k <-> ( k / 2 ) e. NN ) )
104 99 103 mpbird
 |-  ( ( k e. NN /\ ( k / 2 ) e. NN ) -> 2 || k )
105 104 iftrued
 |-  ( ( k e. NN /\ ( k / 2 ) e. NN ) -> if ( 2 || k , 0 , ( ( 4 / ( k x. _pi ) ) x. ( sin ` ( k x. X ) ) ) ) = 0 )
106 98 105 eqtrd
 |-  ( ( k e. NN /\ ( k / 2 ) e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = 0 )
107 106 3adant1
 |-  ( ( T. /\ k e. NN /\ ( k / 2 ) e. NN ) -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = 0 )
108 1re
 |-  1 e. RR
109 108 renegcli
 |-  -u 1 e. RR
110 108 109 ifcli
 |-  if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR
111 110 a1i
 |-  ( x e. RR -> if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR )
112 2 111 fmpti
 |-  F : RR --> RR
113 oveq1
 |-  ( x = y -> ( x mod T ) = ( y mod T ) )
114 113 breq1d
 |-  ( x = y -> ( ( x mod T ) < _pi <-> ( y mod T ) < _pi ) )
115 114 ifbid
 |-  ( x = y -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = if ( ( y mod T ) < _pi , 1 , -u 1 ) )
116 115 cbvmptv
 |-  ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) = ( y e. RR |-> if ( ( y mod T ) < _pi , 1 , -u 1 ) )
117 2 116 eqtri
 |-  F = ( y e. RR |-> if ( ( y mod T ) < _pi , 1 , -u 1 ) )
118 117 a1i
 |-  ( x e. RR -> F = ( y e. RR |-> if ( ( y mod T ) < _pi , 1 , -u 1 ) ) )
119 oveq1
 |-  ( y = ( x + T ) -> ( y mod T ) = ( ( x + T ) mod T ) )
120 pire
 |-  _pi e. RR
121 32 120 remulcli
 |-  ( 2 x. _pi ) e. RR
122 1 121 eqeltri
 |-  T e. RR
123 122 recni
 |-  T e. CC
124 123 mulid2i
 |-  ( 1 x. T ) = T
125 124 eqcomi
 |-  T = ( 1 x. T )
126 125 oveq2i
 |-  ( x + T ) = ( x + ( 1 x. T ) )
127 126 oveq1i
 |-  ( ( x + T ) mod T ) = ( ( x + ( 1 x. T ) ) mod T )
128 119 127 eqtrdi
 |-  ( y = ( x + T ) -> ( y mod T ) = ( ( x + ( 1 x. T ) ) mod T ) )
129 128 adantl
 |-  ( ( x e. RR /\ y = ( x + T ) ) -> ( y mod T ) = ( ( x + ( 1 x. T ) ) mod T ) )
130 simpl
 |-  ( ( x e. RR /\ y = ( x + T ) ) -> x e. RR )
131 2pos
 |-  0 < 2
132 32 120 131 72 mulgt0ii
 |-  0 < ( 2 x. _pi )
133 1 eqcomi
 |-  ( 2 x. _pi ) = T
134 132 133 breqtri
 |-  0 < T
135 122 134 elrpii
 |-  T e. RR+
136 135 a1i
 |-  ( ( x e. RR /\ y = ( x + T ) ) -> T e. RR+ )
137 1zzd
 |-  ( ( x e. RR /\ y = ( x + T ) ) -> 1 e. ZZ )
138 modcyc
 |-  ( ( x e. RR /\ T e. RR+ /\ 1 e. ZZ ) -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) )
139 130 136 137 138 syl3anc
 |-  ( ( x e. RR /\ y = ( x + T ) ) -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) )
140 129 139 eqtrd
 |-  ( ( x e. RR /\ y = ( x + T ) ) -> ( y mod T ) = ( x mod T ) )
141 140 breq1d
 |-  ( ( x e. RR /\ y = ( x + T ) ) -> ( ( y mod T ) < _pi <-> ( x mod T ) < _pi ) )
142 141 ifbid
 |-  ( ( x e. RR /\ y = ( x + T ) ) -> if ( ( y mod T ) < _pi , 1 , -u 1 ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
143 id
 |-  ( x e. RR -> x e. RR )
144 122 a1i
 |-  ( x e. RR -> T e. RR )
145 143 144 readdcld
 |-  ( x e. RR -> ( x + T ) e. RR )
146 118 142 145 111 fvmptd
 |-  ( x e. RR -> ( F ` ( x + T ) ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
147 2 fvmpt2
 |-  ( ( x e. RR /\ if ( ( x mod T ) < _pi , 1 , -u 1 ) e. RR ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
148 110 147 mpan2
 |-  ( x e. RR -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
149 146 148 eqtr4d
 |-  ( x e. RR -> ( F ` ( x + T ) ) = ( F ` x ) )
150 eqid
 |-  ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) )
151 snfi
 |-  { 0 } e. Fin
152 eldifi
 |-  ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x e. ( -u _pi (,) _pi ) )
153 0xr
 |-  0 e. RR*
154 153 a1i
 |-  ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> 0 e. RR* )
155 120 rexri
 |-  _pi e. RR*
156 155 a1i
 |-  ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> _pi e. RR* )
157 elioore
 |-  ( x e. ( -u _pi (,) _pi ) -> x e. RR )
158 157 adantr
 |-  ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> x e. RR )
159 simpr
 |-  ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> 0 < x )
160 120 renegcli
 |-  -u _pi e. RR
161 160 rexri
 |-  -u _pi e. RR*
162 iooltub
 |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi (,) _pi ) ) -> x < _pi )
163 161 155 162 mp3an12
 |-  ( x e. ( -u _pi (,) _pi ) -> x < _pi )
164 163 adantr
 |-  ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> x < _pi )
165 154 156 158 159 164 eliood
 |-  ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> x e. ( 0 (,) _pi ) )
166 negpilt0
 |-  -u _pi < 0
167 160 71 166 ltleii
 |-  -u _pi <_ 0
168 iooss1
 |-  ( ( -u _pi e. RR* /\ -u _pi <_ 0 ) -> ( 0 (,) _pi ) C_ ( -u _pi (,) _pi ) )
169 161 167 168 mp2an
 |-  ( 0 (,) _pi ) C_ ( -u _pi (,) _pi )
170 169 sseli
 |-  ( x e. ( 0 (,) _pi ) -> x e. ( -u _pi (,) _pi ) )
171 2 reseq1i
 |-  ( F |` ( 0 (,) _pi ) ) = ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( 0 (,) _pi ) )
172 ioossre
 |-  ( 0 (,) _pi ) C_ RR
173 resmpt
 |-  ( ( 0 (,) _pi ) C_ RR -> ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( 0 (,) _pi ) ) = ( x e. ( 0 (,) _pi ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) )
174 172 173 ax-mp
 |-  ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( 0 (,) _pi ) ) = ( x e. ( 0 (,) _pi ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) )
175 elioore
 |-  ( x e. ( 0 (,) _pi ) -> x e. RR )
176 135 a1i
 |-  ( x e. ( 0 (,) _pi ) -> T e. RR+ )
177 0red
 |-  ( x e. ( 0 (,) _pi ) -> 0 e. RR )
178 ioogtlb
 |-  ( ( 0 e. RR* /\ _pi e. RR* /\ x e. ( 0 (,) _pi ) ) -> 0 < x )
179 153 155 178 mp3an12
 |-  ( x e. ( 0 (,) _pi ) -> 0 < x )
180 177 175 179 ltled
 |-  ( x e. ( 0 (,) _pi ) -> 0 <_ x )
181 120 a1i
 |-  ( x e. ( 0 (,) _pi ) -> _pi e. RR )
182 122 a1i
 |-  ( x e. ( 0 (,) _pi ) -> T e. RR )
183 170 163 syl
 |-  ( x e. ( 0 (,) _pi ) -> x < _pi )
184 pirp
 |-  _pi e. RR+
185 2timesgt
 |-  ( _pi e. RR+ -> _pi < ( 2 x. _pi ) )
186 184 185 ax-mp
 |-  _pi < ( 2 x. _pi )
187 186 133 breqtri
 |-  _pi < T
188 187 a1i
 |-  ( x e. ( 0 (,) _pi ) -> _pi < T )
189 175 181 182 183 188 lttrd
 |-  ( x e. ( 0 (,) _pi ) -> x < T )
190 modid
 |-  ( ( ( x e. RR /\ T e. RR+ ) /\ ( 0 <_ x /\ x < T ) ) -> ( x mod T ) = x )
191 175 176 180 189 190 syl22anc
 |-  ( x e. ( 0 (,) _pi ) -> ( x mod T ) = x )
192 191 183 eqbrtrd
 |-  ( x e. ( 0 (,) _pi ) -> ( x mod T ) < _pi )
193 192 iftrued
 |-  ( x e. ( 0 (,) _pi ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = 1 )
194 193 mpteq2ia
 |-  ( x e. ( 0 (,) _pi ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) = ( x e. ( 0 (,) _pi ) |-> 1 )
195 171 174 194 3eqtrri
 |-  ( x e. ( 0 (,) _pi ) |-> 1 ) = ( F |` ( 0 (,) _pi ) )
196 195 oveq2i
 |-  ( RR _D ( x e. ( 0 (,) _pi ) |-> 1 ) ) = ( RR _D ( F |` ( 0 (,) _pi ) ) )
197 reelprrecn
 |-  RR e. { RR , CC }
198 197 a1i
 |-  ( T. -> RR e. { RR , CC } )
199 iooretop
 |-  ( 0 (,) _pi ) e. ( topGen ` ran (,) )
200 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
201 200 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
202 199 201 eleqtri
 |-  ( 0 (,) _pi ) e. ( ( TopOpen ` CCfld ) |`t RR )
203 202 a1i
 |-  ( T. -> ( 0 (,) _pi ) e. ( ( TopOpen ` CCfld ) |`t RR ) )
204 1cnd
 |-  ( T. -> 1 e. CC )
205 198 203 204 dvmptconst
 |-  ( T. -> ( RR _D ( x e. ( 0 (,) _pi ) |-> 1 ) ) = ( x e. ( 0 (,) _pi ) |-> 0 ) )
206 205 mptru
 |-  ( RR _D ( x e. ( 0 (,) _pi ) |-> 1 ) ) = ( x e. ( 0 (,) _pi ) |-> 0 )
207 ssid
 |-  RR C_ RR
208 ax-resscn
 |-  RR C_ CC
209 fss
 |-  ( ( F : RR --> RR /\ RR C_ CC ) -> F : RR --> CC )
210 112 208 209 mp2an
 |-  F : RR --> CC
211 dvresioo
 |-  ( ( RR C_ RR /\ F : RR --> CC ) -> ( RR _D ( F |` ( 0 (,) _pi ) ) ) = ( ( RR _D F ) |` ( 0 (,) _pi ) ) )
212 207 210 211 mp2an
 |-  ( RR _D ( F |` ( 0 (,) _pi ) ) ) = ( ( RR _D F ) |` ( 0 (,) _pi ) )
213 196 206 212 3eqtr3i
 |-  ( x e. ( 0 (,) _pi ) |-> 0 ) = ( ( RR _D F ) |` ( 0 (,) _pi ) )
214 213 dmeqi
 |-  dom ( x e. ( 0 (,) _pi ) |-> 0 ) = dom ( ( RR _D F ) |` ( 0 (,) _pi ) )
215 eqid
 |-  ( x e. ( 0 (,) _pi ) |-> 0 ) = ( x e. ( 0 (,) _pi ) |-> 0 )
216 93 215 dmmpti
 |-  dom ( x e. ( 0 (,) _pi ) |-> 0 ) = ( 0 (,) _pi )
217 214 216 eqtr3i
 |-  dom ( ( RR _D F ) |` ( 0 (,) _pi ) ) = ( 0 (,) _pi )
218 ssdmres
 |-  ( ( 0 (,) _pi ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( 0 (,) _pi ) ) = ( 0 (,) _pi ) )
219 217 218 mpbir
 |-  ( 0 (,) _pi ) C_ dom ( RR _D F )
220 219 sseli
 |-  ( x e. ( 0 (,) _pi ) -> x e. dom ( RR _D F ) )
221 170 220 elind
 |-  ( x e. ( 0 (,) _pi ) -> x e. ( ( -u _pi (,) _pi ) i^i dom ( RR _D F ) ) )
222 dmres
 |-  dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) = ( ( -u _pi (,) _pi ) i^i dom ( RR _D F ) )
223 221 222 eleqtrrdi
 |-  ( x e. ( 0 (,) _pi ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
224 165 223 syl
 |-  ( ( x e. ( -u _pi (,) _pi ) /\ 0 < x ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
225 224 adantlr
 |-  ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ 0 < x ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
226 161 a1i
 |-  ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> -u _pi e. RR* )
227 153 a1i
 |-  ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> 0 e. RR* )
228 157 ad2antrr
 |-  ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> x e. RR )
229 ioogtlb
 |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi (,) _pi ) ) -> -u _pi < x )
230 161 155 229 mp3an12
 |-  ( x e. ( -u _pi (,) _pi ) -> -u _pi < x )
231 230 ad2antrr
 |-  ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> -u _pi < x )
232 0red
 |-  ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> 0 e. RR )
233 neqne
 |-  ( -. x = 0 -> x =/= 0 )
234 233 ad2antlr
 |-  ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> x =/= 0 )
235 simpr
 |-  ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> -. 0 < x )
236 228 232 234 235 lttri5d
 |-  ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> x < 0 )
237 226 227 228 231 236 eliood
 |-  ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> x e. ( -u _pi (,) 0 ) )
238 71 120 72 ltleii
 |-  0 <_ _pi
239 iooss2
 |-  ( ( _pi e. RR* /\ 0 <_ _pi ) -> ( -u _pi (,) 0 ) C_ ( -u _pi (,) _pi ) )
240 155 238 239 mp2an
 |-  ( -u _pi (,) 0 ) C_ ( -u _pi (,) _pi )
241 240 sseli
 |-  ( x e. ( -u _pi (,) 0 ) -> x e. ( -u _pi (,) _pi ) )
242 2 reseq1i
 |-  ( F |` ( -u _pi (,) 0 ) ) = ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( -u _pi (,) 0 ) )
243 ioossre
 |-  ( -u _pi (,) 0 ) C_ RR
244 resmpt
 |-  ( ( -u _pi (,) 0 ) C_ RR -> ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( -u _pi (,) 0 ) ) = ( x e. ( -u _pi (,) 0 ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) )
245 243 244 ax-mp
 |-  ( ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) |` ( -u _pi (,) 0 ) ) = ( x e. ( -u _pi (,) 0 ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) )
246 120 a1i
 |-  ( x e. ( -u _pi (,) 0 ) -> _pi e. RR )
247 elioore
 |-  ( x e. ( -u _pi (,) 0 ) -> x e. RR )
248 135 a1i
 |-  ( x e. ( -u _pi (,) 0 ) -> T e. RR+ )
249 247 248 modcld
 |-  ( x e. ( -u _pi (,) 0 ) -> ( x mod T ) e. RR )
250 247 145 syl
 |-  ( x e. ( -u _pi (,) 0 ) -> ( x + T ) e. RR )
251 56 2timesi
 |-  ( 2 x. _pi ) = ( _pi + _pi )
252 1 251 eqtri
 |-  T = ( _pi + _pi )
253 252 oveq2i
 |-  ( -u _pi + T ) = ( -u _pi + ( _pi + _pi ) )
254 negpicn
 |-  -u _pi e. CC
255 254 56 56 addassi
 |-  ( ( -u _pi + _pi ) + _pi ) = ( -u _pi + ( _pi + _pi ) )
256 255 eqcomi
 |-  ( -u _pi + ( _pi + _pi ) ) = ( ( -u _pi + _pi ) + _pi )
257 56 negidi
 |-  ( _pi + -u _pi ) = 0
258 56 254 257 addcomli
 |-  ( -u _pi + _pi ) = 0
259 258 oveq1i
 |-  ( ( -u _pi + _pi ) + _pi ) = ( 0 + _pi )
260 56 addid2i
 |-  ( 0 + _pi ) = _pi
261 259 260 eqtri
 |-  ( ( -u _pi + _pi ) + _pi ) = _pi
262 253 256 261 3eqtrri
 |-  _pi = ( -u _pi + T )
263 262 a1i
 |-  ( x e. ( -u _pi (,) 0 ) -> _pi = ( -u _pi + T ) )
264 160 a1i
 |-  ( x e. ( -u _pi (,) 0 ) -> -u _pi e. RR )
265 122 a1i
 |-  ( x e. ( -u _pi (,) 0 ) -> T e. RR )
266 241 230 syl
 |-  ( x e. ( -u _pi (,) 0 ) -> -u _pi < x )
267 264 247 265 266 ltadd1dd
 |-  ( x e. ( -u _pi (,) 0 ) -> ( -u _pi + T ) < ( x + T ) )
268 263 267 eqbrtrd
 |-  ( x e. ( -u _pi (,) 0 ) -> _pi < ( x + T ) )
269 246 250 268 ltled
 |-  ( x e. ( -u _pi (,) 0 ) -> _pi <_ ( x + T ) )
270 0red
 |-  ( x e. ( -u _pi (,) 0 ) -> 0 e. RR )
271 160 122 readdcli
 |-  ( -u _pi + T ) e. RR
272 271 a1i
 |-  ( x e. ( -u _pi (,) 0 ) -> ( -u _pi + T ) e. RR )
273 72 a1i
 |-  ( x e. ( -u _pi (,) 0 ) -> 0 < _pi )
274 273 262 breqtrdi
 |-  ( x e. ( -u _pi (,) 0 ) -> 0 < ( -u _pi + T ) )
275 270 272 250 274 267 lttrd
 |-  ( x e. ( -u _pi (,) 0 ) -> 0 < ( x + T ) )
276 270 250 275 ltled
 |-  ( x e. ( -u _pi (,) 0 ) -> 0 <_ ( x + T ) )
277 247 recnd
 |-  ( x e. ( -u _pi (,) 0 ) -> x e. CC )
278 123 a1i
 |-  ( x e. ( -u _pi (,) 0 ) -> T e. CC )
279 277 278 addcomd
 |-  ( x e. ( -u _pi (,) 0 ) -> ( x + T ) = ( T + x ) )
280 iooltub
 |-  ( ( -u _pi e. RR* /\ 0 e. RR* /\ x e. ( -u _pi (,) 0 ) ) -> x < 0 )
281 161 153 280 mp3an12
 |-  ( x e. ( -u _pi (,) 0 ) -> x < 0 )
282 ltaddneg
 |-  ( ( x e. RR /\ T e. RR ) -> ( x < 0 <-> ( T + x ) < T ) )
283 247 122 282 sylancl
 |-  ( x e. ( -u _pi (,) 0 ) -> ( x < 0 <-> ( T + x ) < T ) )
284 281 283 mpbid
 |-  ( x e. ( -u _pi (,) 0 ) -> ( T + x ) < T )
285 279 284 eqbrtrd
 |-  ( x e. ( -u _pi (,) 0 ) -> ( x + T ) < T )
286 276 285 jca
 |-  ( x e. ( -u _pi (,) 0 ) -> ( 0 <_ ( x + T ) /\ ( x + T ) < T ) )
287 modid2
 |-  ( ( ( x + T ) e. RR /\ T e. RR+ ) -> ( ( ( x + T ) mod T ) = ( x + T ) <-> ( 0 <_ ( x + T ) /\ ( x + T ) < T ) ) )
288 250 135 287 sylancl
 |-  ( x e. ( -u _pi (,) 0 ) -> ( ( ( x + T ) mod T ) = ( x + T ) <-> ( 0 <_ ( x + T ) /\ ( x + T ) < T ) ) )
289 286 288 mpbird
 |-  ( x e. ( -u _pi (,) 0 ) -> ( ( x + T ) mod T ) = ( x + T ) )
290 127 a1i
 |-  ( x e. RR -> ( ( x + T ) mod T ) = ( ( x + ( 1 x. T ) ) mod T ) )
291 135 a1i
 |-  ( x e. RR -> T e. RR+ )
292 1zzd
 |-  ( x e. RR -> 1 e. ZZ )
293 143 291 292 138 syl3anc
 |-  ( x e. RR -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) )
294 290 293 eqtrd
 |-  ( x e. RR -> ( ( x + T ) mod T ) = ( x mod T ) )
295 247 294 syl
 |-  ( x e. ( -u _pi (,) 0 ) -> ( ( x + T ) mod T ) = ( x mod T ) )
296 289 295 eqtr3d
 |-  ( x e. ( -u _pi (,) 0 ) -> ( x + T ) = ( x mod T ) )
297 269 296 breqtrd
 |-  ( x e. ( -u _pi (,) 0 ) -> _pi <_ ( x mod T ) )
298 246 249 297 lensymd
 |-  ( x e. ( -u _pi (,) 0 ) -> -. ( x mod T ) < _pi )
299 298 iffalsed
 |-  ( x e. ( -u _pi (,) 0 ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = -u 1 )
300 299 mpteq2ia
 |-  ( x e. ( -u _pi (,) 0 ) |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) = ( x e. ( -u _pi (,) 0 ) |-> -u 1 )
301 242 245 300 3eqtrri
 |-  ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) = ( F |` ( -u _pi (,) 0 ) )
302 301 oveq2i
 |-  ( RR _D ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) ) = ( RR _D ( F |` ( -u _pi (,) 0 ) ) )
303 iooretop
 |-  ( -u _pi (,) 0 ) e. ( topGen ` ran (,) )
304 303 201 eleqtri
 |-  ( -u _pi (,) 0 ) e. ( ( TopOpen ` CCfld ) |`t RR )
305 304 a1i
 |-  ( T. -> ( -u _pi (,) 0 ) e. ( ( TopOpen ` CCfld ) |`t RR ) )
306 204 negcld
 |-  ( T. -> -u 1 e. CC )
307 198 305 306 dvmptconst
 |-  ( T. -> ( RR _D ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) ) = ( x e. ( -u _pi (,) 0 ) |-> 0 ) )
308 307 mptru
 |-  ( RR _D ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) ) = ( x e. ( -u _pi (,) 0 ) |-> 0 )
309 dvresioo
 |-  ( ( RR C_ RR /\ F : RR --> CC ) -> ( RR _D ( F |` ( -u _pi (,) 0 ) ) ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) )
310 207 210 309 mp2an
 |-  ( RR _D ( F |` ( -u _pi (,) 0 ) ) ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) )
311 302 308 310 3eqtr3i
 |-  ( x e. ( -u _pi (,) 0 ) |-> 0 ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) )
312 311 dmeqi
 |-  dom ( x e. ( -u _pi (,) 0 ) |-> 0 ) = dom ( ( RR _D F ) |` ( -u _pi (,) 0 ) )
313 eqid
 |-  ( x e. ( -u _pi (,) 0 ) |-> 0 ) = ( x e. ( -u _pi (,) 0 ) |-> 0 )
314 93 313 dmmpti
 |-  dom ( x e. ( -u _pi (,) 0 ) |-> 0 ) = ( -u _pi (,) 0 )
315 312 314 eqtr3i
 |-  dom ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) = ( -u _pi (,) 0 )
316 ssdmres
 |-  ( ( -u _pi (,) 0 ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) = ( -u _pi (,) 0 ) )
317 315 316 mpbir
 |-  ( -u _pi (,) 0 ) C_ dom ( RR _D F )
318 317 sseli
 |-  ( x e. ( -u _pi (,) 0 ) -> x e. dom ( RR _D F ) )
319 241 318 elind
 |-  ( x e. ( -u _pi (,) 0 ) -> x e. ( ( -u _pi (,) _pi ) i^i dom ( RR _D F ) ) )
320 319 222 eleqtrrdi
 |-  ( x e. ( -u _pi (,) 0 ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
321 237 320 syl
 |-  ( ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) /\ -. 0 < x ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
322 225 321 pm2.61dan
 |-  ( ( x e. ( -u _pi (,) _pi ) /\ -. x = 0 ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
323 152 322 sylan
 |-  ( ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = 0 ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
324 eldifn
 |-  ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
325 324 adantr
 |-  ( ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = 0 ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
326 323 325 condan
 |-  ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x = 0 )
327 velsn
 |-  ( x e. { 0 } <-> x = 0 )
328 326 327 sylibr
 |-  ( x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x e. { 0 } )
329 328 ssriv
 |-  ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) C_ { 0 }
330 ssfi
 |-  ( ( { 0 } e. Fin /\ ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) C_ { 0 } ) -> ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) e. Fin )
331 151 329 330 mp2an
 |-  ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) e. Fin
332 inss1
 |-  ( ( -u _pi (,) _pi ) i^i dom ( RR _D F ) ) C_ ( -u _pi (,) _pi )
333 222 332 eqsstri
 |-  dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ ( -u _pi (,) _pi )
334 ioosscn
 |-  ( -u _pi (,) _pi ) C_ CC
335 333 334 sstri
 |-  dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ CC
336 335 a1i
 |-  ( T. -> dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ CC )
337 dvf
 |-  ( RR _D F ) : dom ( RR _D F ) --> CC
338 fresin
 |-  ( ( RR _D F ) : dom ( RR _D F ) --> CC -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : ( dom ( RR _D F ) i^i ( -u _pi (,) _pi ) ) --> CC )
339 ffdm
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : ( dom ( RR _D F ) i^i ( -u _pi (,) _pi ) ) --> CC -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) --> CC /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ ( dom ( RR _D F ) i^i ( -u _pi (,) _pi ) ) ) )
340 337 338 339 mp2b
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) --> CC /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ ( dom ( RR _D F ) i^i ( -u _pi (,) _pi ) ) )
341 340 simpli
 |-  ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) --> CC
342 341 a1i
 |-  ( T. -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) : dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) --> CC )
343 161 a1i
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> -u _pi e. RR* )
344 153 a1i
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> 0 e. RR* )
345 ioossre
 |-  ( -u _pi (,) _pi ) C_ RR
346 333 sseli
 |-  ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> x e. ( -u _pi (,) _pi ) )
347 345 346 sselid
 |-  ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> x e. RR )
348 347 adantr
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> x e. RR )
349 346 230 syl
 |-  ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> -u _pi < x )
350 349 adantr
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> -u _pi < x )
351 simpr
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> x < 0 )
352 343 344 348 350 351 eliood
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> x e. ( -u _pi (,) 0 ) )
353 elun1
 |-  ( x e. ( -u _pi (,) 0 ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) )
354 352 353 syl
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ x < 0 ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) )
355 simpl
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
356 0red
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> 0 e. RR )
357 347 adantr
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> x e. RR )
358 simpr
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> -. x < 0 )
359 356 357 358 nltled
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> 0 <_ x )
360 id
 |-  ( x = 0 -> x = 0 )
361 207 a1i
 |-  ( T. -> RR C_ RR )
362 eqid
 |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) )
363 210 a1i
 |-  ( T. -> F : RR --> CC )
364 0red
 |-  ( T. -> 0 e. RR )
365 mnfxr
 |-  -oo e. RR*
366 365 a1i
 |-  ( T. -> -oo e. RR* )
367 364 mnfltd
 |-  ( T. -> -oo < 0 )
368 362 366 364 367 lptioo2
 |-  ( T. -> 0 e. ( ( limPt ` ( topGen ` ran (,) ) ) ` ( -oo (,) 0 ) ) )
369 incom
 |-  ( RR i^i ( -oo (,) 0 ) ) = ( ( -oo (,) 0 ) i^i RR )
370 ioossre
 |-  ( -oo (,) 0 ) C_ RR
371 df-ss
 |-  ( ( -oo (,) 0 ) C_ RR <-> ( ( -oo (,) 0 ) i^i RR ) = ( -oo (,) 0 ) )
372 370 371 mpbi
 |-  ( ( -oo (,) 0 ) i^i RR ) = ( -oo (,) 0 )
373 369 372 eqtr2i
 |-  ( -oo (,) 0 ) = ( RR i^i ( -oo (,) 0 ) )
374 373 fveq2i
 |-  ( ( limPt ` ( topGen ` ran (,) ) ) ` ( -oo (,) 0 ) ) = ( ( limPt ` ( topGen ` ran (,) ) ) ` ( RR i^i ( -oo (,) 0 ) ) )
375 368 374 eleqtrdi
 |-  ( T. -> 0 e. ( ( limPt ` ( topGen ` ran (,) ) ) ` ( RR i^i ( -oo (,) 0 ) ) ) )
376 pnfxr
 |-  +oo e. RR*
377 376 a1i
 |-  ( T. -> +oo e. RR* )
378 364 ltpnfd
 |-  ( T. -> 0 < +oo )
379 362 364 377 378 lptioo1
 |-  ( T. -> 0 e. ( ( limPt ` ( topGen ` ran (,) ) ) ` ( 0 (,) +oo ) ) )
380 incom
 |-  ( RR i^i ( 0 (,) +oo ) ) = ( ( 0 (,) +oo ) i^i RR )
381 ioossre
 |-  ( 0 (,) +oo ) C_ RR
382 df-ss
 |-  ( ( 0 (,) +oo ) C_ RR <-> ( ( 0 (,) +oo ) i^i RR ) = ( 0 (,) +oo ) )
383 381 382 mpbi
 |-  ( ( 0 (,) +oo ) i^i RR ) = ( 0 (,) +oo )
384 380 383 eqtr2i
 |-  ( 0 (,) +oo ) = ( RR i^i ( 0 (,) +oo ) )
385 384 fveq2i
 |-  ( ( limPt ` ( topGen ` ran (,) ) ) ` ( 0 (,) +oo ) ) = ( ( limPt ` ( topGen ` ran (,) ) ) ` ( RR i^i ( 0 (,) +oo ) ) )
386 379 385 eleqtrdi
 |-  ( T. -> 0 e. ( ( limPt ` ( topGen ` ran (,) ) ) ` ( RR i^i ( 0 (,) +oo ) ) ) )
387 eqid
 |-  ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) = ( x e. ( -u _pi (,) 0 ) |-> -u 1 )
388 mnfle
 |-  ( -u _pi e. RR* -> -oo <_ -u _pi )
389 161 388 ax-mp
 |-  -oo <_ -u _pi
390 iooss1
 |-  ( ( -oo e. RR* /\ -oo <_ -u _pi ) -> ( -u _pi (,) 0 ) C_ ( -oo (,) 0 ) )
391 365 389 390 mp2an
 |-  ( -u _pi (,) 0 ) C_ ( -oo (,) 0 )
392 391 a1i
 |-  ( T. -> ( -u _pi (,) 0 ) C_ ( -oo (,) 0 ) )
393 ioosscn
 |-  ( -oo (,) 0 ) C_ CC
394 392 393 sstrdi
 |-  ( T. -> ( -u _pi (,) 0 ) C_ CC )
395 0cnd
 |-  ( T. -> 0 e. CC )
396 387 394 306 395 constlimc
 |-  ( T. -> -u 1 e. ( ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) limCC 0 ) )
397 resabs1
 |-  ( ( -u _pi (,) 0 ) C_ ( -oo (,) 0 ) -> ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) ) = ( F |` ( -u _pi (,) 0 ) ) )
398 391 397 ax-mp
 |-  ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) ) = ( F |` ( -u _pi (,) 0 ) )
399 301 398 eqtr4i
 |-  ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) = ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) )
400 399 oveq1i
 |-  ( ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) limCC 0 ) = ( ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) ) limCC 0 )
401 fssres
 |-  ( ( F : RR --> CC /\ ( -oo (,) 0 ) C_ RR ) -> ( F |` ( -oo (,) 0 ) ) : ( -oo (,) 0 ) --> CC )
402 210 370 401 mp2an
 |-  ( F |` ( -oo (,) 0 ) ) : ( -oo (,) 0 ) --> CC
403 402 a1i
 |-  ( T. -> ( F |` ( -oo (,) 0 ) ) : ( -oo (,) 0 ) --> CC )
404 393 a1i
 |-  ( T. -> ( -oo (,) 0 ) C_ CC )
405 eqid
 |-  ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) )
406 0le0
 |-  0 <_ 0
407 elioc2
 |-  ( ( -u _pi e. RR* /\ 0 e. RR ) -> ( 0 e. ( -u _pi (,] 0 ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ 0 ) ) )
408 161 71 407 mp2an
 |-  ( 0 e. ( -u _pi (,] 0 ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ 0 ) )
409 71 166 406 408 mpbir3an
 |-  0 e. ( -u _pi (,] 0 )
410 200 cnfldtop
 |-  ( TopOpen ` CCfld ) e. Top
411 ovex
 |-  ( -oo (,] 0 ) e. _V
412 resttop
 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( -oo (,] 0 ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) e. Top )
413 410 411 412 mp2an
 |-  ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) e. Top
414 161 a1i
 |-  ( T. -> -u _pi e. RR* )
415 eqid
 |-  ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) ) = ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) )
416 389 a1i
 |-  ( T. -> -oo <_ -u _pi )
417 366 414 364 362 415 416 364 iocopn
 |-  ( T. -> ( -u _pi (,] 0 ) e. ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) ) )
418 417 mptru
 |-  ( -u _pi (,] 0 ) e. ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) )
419 201 oveq1i
 |-  ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( -oo (,] 0 ) )
420 iocssre
 |-  ( ( -oo e. RR* /\ 0 e. RR ) -> ( -oo (,] 0 ) C_ RR )
421 365 71 420 mp2an
 |-  ( -oo (,] 0 ) C_ RR
422 197 elexi
 |-  RR e. _V
423 restabs
 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( -oo (,] 0 ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( -oo (,] 0 ) ) = ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) )
424 410 421 422 423 mp3an
 |-  ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( -oo (,] 0 ) ) = ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) )
425 419 424 eqtri
 |-  ( ( topGen ` ran (,) ) |`t ( -oo (,] 0 ) ) = ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) )
426 418 425 eleqtri
 |-  ( -u _pi (,] 0 ) e. ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) )
427 isopn3i
 |-  ( ( ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) e. Top /\ ( -u _pi (,] 0 ) e. ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) ) ` ( -u _pi (,] 0 ) ) = ( -u _pi (,] 0 ) )
428 413 426 427 mp2an
 |-  ( ( int ` ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) ) ` ( -u _pi (,] 0 ) ) = ( -u _pi (,] 0 )
429 mnflt0
 |-  -oo < 0
430 ioounsn
 |-  ( ( -oo e. RR* /\ 0 e. RR* /\ -oo < 0 ) -> ( ( -oo (,) 0 ) u. { 0 } ) = ( -oo (,] 0 ) )
431 365 153 429 430 mp3an
 |-  ( ( -oo (,) 0 ) u. { 0 } ) = ( -oo (,] 0 )
432 431 eqcomi
 |-  ( -oo (,] 0 ) = ( ( -oo (,) 0 ) u. { 0 } )
433 432 oveq2i
 |-  ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) = ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) )
434 433 fveq2i
 |-  ( int ` ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) )
435 ioounsn
 |-  ( ( -u _pi e. RR* /\ 0 e. RR* /\ -u _pi < 0 ) -> ( ( -u _pi (,) 0 ) u. { 0 } ) = ( -u _pi (,] 0 ) )
436 161 153 166 435 mp3an
 |-  ( ( -u _pi (,) 0 ) u. { 0 } ) = ( -u _pi (,] 0 )
437 436 eqcomi
 |-  ( -u _pi (,] 0 ) = ( ( -u _pi (,) 0 ) u. { 0 } )
438 434 437 fveq12i
 |-  ( ( int ` ( ( TopOpen ` CCfld ) |`t ( -oo (,] 0 ) ) ) ` ( -u _pi (,] 0 ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) ) ` ( ( -u _pi (,) 0 ) u. { 0 } ) )
439 428 438 eqtr3i
 |-  ( -u _pi (,] 0 ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) ) ` ( ( -u _pi (,) 0 ) u. { 0 } ) )
440 409 439 eleqtri
 |-  0 e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) ) ` ( ( -u _pi (,) 0 ) u. { 0 } ) )
441 440 a1i
 |-  ( T. -> 0 e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -oo (,) 0 ) u. { 0 } ) ) ) ` ( ( -u _pi (,) 0 ) u. { 0 } ) ) )
442 403 392 404 200 405 441 limcres
 |-  ( T. -> ( ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) ) limCC 0 ) = ( ( F |` ( -oo (,) 0 ) ) limCC 0 ) )
443 442 mptru
 |-  ( ( ( F |` ( -oo (,) 0 ) ) |` ( -u _pi (,) 0 ) ) limCC 0 ) = ( ( F |` ( -oo (,) 0 ) ) limCC 0 )
444 400 443 eqtri
 |-  ( ( x e. ( -u _pi (,) 0 ) |-> -u 1 ) limCC 0 ) = ( ( F |` ( -oo (,) 0 ) ) limCC 0 )
445 396 444 eleqtrdi
 |-  ( T. -> -u 1 e. ( ( F |` ( -oo (,) 0 ) ) limCC 0 ) )
446 eqid
 |-  ( x e. ( 0 (,) _pi ) |-> 1 ) = ( x e. ( 0 (,) _pi ) |-> 1 )
447 ioosscn
 |-  ( 0 (,) _pi ) C_ CC
448 447 a1i
 |-  ( T. -> ( 0 (,) _pi ) C_ CC )
449 446 448 204 395 constlimc
 |-  ( T. -> 1 e. ( ( x e. ( 0 (,) _pi ) |-> 1 ) limCC 0 ) )
450 ltpnf
 |-  ( _pi e. RR -> _pi < +oo )
451 xrltle
 |-  ( ( _pi e. RR* /\ +oo e. RR* ) -> ( _pi < +oo -> _pi <_ +oo ) )
452 155 376 451 mp2an
 |-  ( _pi < +oo -> _pi <_ +oo )
453 120 450 452 mp2b
 |-  _pi <_ +oo
454 iooss2
 |-  ( ( +oo e. RR* /\ _pi <_ +oo ) -> ( 0 (,) _pi ) C_ ( 0 (,) +oo ) )
455 376 453 454 mp2an
 |-  ( 0 (,) _pi ) C_ ( 0 (,) +oo )
456 resabs1
 |-  ( ( 0 (,) _pi ) C_ ( 0 (,) +oo ) -> ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) ) = ( F |` ( 0 (,) _pi ) ) )
457 455 456 ax-mp
 |-  ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) ) = ( F |` ( 0 (,) _pi ) )
458 195 457 eqtr4i
 |-  ( x e. ( 0 (,) _pi ) |-> 1 ) = ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) )
459 458 oveq1i
 |-  ( ( x e. ( 0 (,) _pi ) |-> 1 ) limCC 0 ) = ( ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) ) limCC 0 )
460 fssres
 |-  ( ( F : RR --> CC /\ ( 0 (,) +oo ) C_ RR ) -> ( F |` ( 0 (,) +oo ) ) : ( 0 (,) +oo ) --> CC )
461 210 381 460 mp2an
 |-  ( F |` ( 0 (,) +oo ) ) : ( 0 (,) +oo ) --> CC
462 461 a1i
 |-  ( T. -> ( F |` ( 0 (,) +oo ) ) : ( 0 (,) +oo ) --> CC )
463 455 a1i
 |-  ( T. -> ( 0 (,) _pi ) C_ ( 0 (,) +oo ) )
464 ioosscn
 |-  ( 0 (,) +oo ) C_ CC
465 464 a1i
 |-  ( T. -> ( 0 (,) +oo ) C_ CC )
466 eqid
 |-  ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) )
467 elico2
 |-  ( ( 0 e. RR /\ _pi e. RR* ) -> ( 0 e. ( 0 [,) _pi ) <-> ( 0 e. RR /\ 0 <_ 0 /\ 0 < _pi ) ) )
468 71 155 467 mp2an
 |-  ( 0 e. ( 0 [,) _pi ) <-> ( 0 e. RR /\ 0 <_ 0 /\ 0 < _pi ) )
469 71 406 72 468 mpbir3an
 |-  0 e. ( 0 [,) _pi )
470 ovex
 |-  ( 0 [,) +oo ) e. _V
471 resttop
 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( 0 [,) +oo ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) e. Top )
472 410 470 471 mp2an
 |-  ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) e. Top
473 155 a1i
 |-  ( T. -> _pi e. RR* )
474 eqid
 |-  ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) )
475 453 a1i
 |-  ( T. -> _pi <_ +oo )
476 364 473 377 362 474 475 icoopn
 |-  ( T. -> ( 0 [,) _pi ) e. ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) ) )
477 476 mptru
 |-  ( 0 [,) _pi ) e. ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) )
478 201 oveq1i
 |-  ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( 0 [,) +oo ) )
479 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
480 restabs
 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( 0 [,) +oo ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) )
481 410 479 422 480 mp3an
 |-  ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) )
482 478 481 eqtri
 |-  ( ( topGen ` ran (,) ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) )
483 477 482 eleqtri
 |-  ( 0 [,) _pi ) e. ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) )
484 isopn3i
 |-  ( ( ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) e. Top /\ ( 0 [,) _pi ) e. ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ` ( 0 [,) _pi ) ) = ( 0 [,) _pi ) )
485 472 483 484 mp2an
 |-  ( ( int ` ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ` ( 0 [,) _pi ) ) = ( 0 [,) _pi )
486 0ltpnf
 |-  0 < +oo
487 snunioo1
 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ 0 < +oo ) -> ( ( 0 (,) +oo ) u. { 0 } ) = ( 0 [,) +oo ) )
488 153 376 486 487 mp3an
 |-  ( ( 0 (,) +oo ) u. { 0 } ) = ( 0 [,) +oo )
489 488 eqcomi
 |-  ( 0 [,) +oo ) = ( ( 0 (,) +oo ) u. { 0 } )
490 489 oveq2i
 |-  ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) = ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) )
491 490 fveq2i
 |-  ( int ` ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) )
492 snunioo1
 |-  ( ( 0 e. RR* /\ _pi e. RR* /\ 0 < _pi ) -> ( ( 0 (,) _pi ) u. { 0 } ) = ( 0 [,) _pi ) )
493 153 155 72 492 mp3an
 |-  ( ( 0 (,) _pi ) u. { 0 } ) = ( 0 [,) _pi )
494 493 eqcomi
 |-  ( 0 [,) _pi ) = ( ( 0 (,) _pi ) u. { 0 } )
495 491 494 fveq12i
 |-  ( ( int ` ( ( TopOpen ` CCfld ) |`t ( 0 [,) +oo ) ) ) ` ( 0 [,) _pi ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) ) ` ( ( 0 (,) _pi ) u. { 0 } ) )
496 485 495 eqtr3i
 |-  ( 0 [,) _pi ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) ) ` ( ( 0 (,) _pi ) u. { 0 } ) )
497 469 496 eleqtri
 |-  0 e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) ) ` ( ( 0 (,) _pi ) u. { 0 } ) )
498 497 a1i
 |-  ( T. -> 0 e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( 0 (,) +oo ) u. { 0 } ) ) ) ` ( ( 0 (,) _pi ) u. { 0 } ) ) )
499 462 463 465 200 466 498 limcres
 |-  ( T. -> ( ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) ) limCC 0 ) = ( ( F |` ( 0 (,) +oo ) ) limCC 0 ) )
500 499 mptru
 |-  ( ( ( F |` ( 0 (,) +oo ) ) |` ( 0 (,) _pi ) ) limCC 0 ) = ( ( F |` ( 0 (,) +oo ) ) limCC 0 )
501 459 500 eqtri
 |-  ( ( x e. ( 0 (,) _pi ) |-> 1 ) limCC 0 ) = ( ( F |` ( 0 (,) +oo ) ) limCC 0 )
502 449 501 eleqtrdi
 |-  ( T. -> 1 e. ( ( F |` ( 0 (,) +oo ) ) limCC 0 ) )
503 neg1lt0
 |-  -u 1 < 0
504 109 71 108 lttri
 |-  ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 )
505 503 38 504 mp2an
 |-  -u 1 < 1
506 109 505 ltneii
 |-  -u 1 =/= 1
507 506 a1i
 |-  ( T. -> -u 1 =/= 1 )
508 200 361 362 363 364 375 386 445 502 507 jumpncnp
 |-  ( T. -> -. F e. ( ( ( topGen ` ran (,) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) )
509 508 mptru
 |-  -. F e. ( ( ( topGen ` ran (,) ) CnP ( TopOpen ` CCfld ) ) ` 0 )
510 208 a1i
 |-  ( 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> RR C_ CC )
511 210 a1i
 |-  ( 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> F : RR --> CC )
512 207 a1i
 |-  ( 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> RR C_ RR )
513 inss2
 |-  ( ( -u _pi (,) _pi ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F )
514 222 513 eqsstri
 |-  dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ dom ( RR _D F )
515 514 sseli
 |-  ( 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> 0 e. dom ( RR _D F ) )
516 201 200 dvcnp2
 |-  ( ( ( RR C_ CC /\ F : RR --> CC /\ RR C_ RR ) /\ 0 e. dom ( RR _D F ) ) -> F e. ( ( ( topGen ` ran (,) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) )
517 510 511 512 515 516 syl31anc
 |-  ( 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> F e. ( ( ( topGen ` ran (,) ) CnP ( TopOpen ` CCfld ) ) ` 0 ) )
518 509 517 mto
 |-  -. 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) )
519 518 a1i
 |-  ( x = 0 -> -. 0 e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
520 360 519 eqneltrd
 |-  ( x = 0 -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
521 520 necon2ai
 |-  ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> x =/= 0 )
522 521 adantr
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> x =/= 0 )
523 356 357 359 522 leneltd
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> 0 < x )
524 346 165 sylan
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ 0 < x ) -> x e. ( 0 (,) _pi ) )
525 elun2
 |-  ( x e. ( 0 (,) _pi ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) )
526 524 525 syl
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ 0 < x ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) )
527 355 523 526 syl2anc
 |-  ( ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ -. x < 0 ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) )
528 354 527 pm2.61dan
 |-  ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> x e. ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) ) )
529 ovex
 |-  ( -u _pi (,) 0 ) e. _V
530 ovex
 |-  ( 0 (,) _pi ) e. _V
531 529 530 unipr
 |-  U. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } = ( ( -u _pi (,) 0 ) u. ( 0 (,) _pi ) )
532 528 531 eleqtrrdi
 |-  ( x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -> x e. U. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } )
533 532 ssriv
 |-  dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ U. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) }
534 533 a1i
 |-  ( T. -> dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ U. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } )
535 ineq2
 |-  ( x = ( -u _pi (,) 0 ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) = ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( -u _pi (,) 0 ) ) )
536 retop
 |-  ( topGen ` ran (,) ) e. Top
537 ovex
 |-  ( RR _D F ) e. _V
538 537 resex
 |-  ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. _V
539 538 dmex
 |-  dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. _V
540 536 539 pm3.2i
 |-  ( ( topGen ` ran (,) ) e. Top /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. _V )
541 320 ssriv
 |-  ( -u _pi (,) 0 ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) )
542 ssid
 |-  ( -u _pi (,) 0 ) C_ ( -u _pi (,) 0 )
543 303 541 542 3pm3.2i
 |-  ( ( -u _pi (,) 0 ) e. ( topGen ` ran (,) ) /\ ( -u _pi (,) 0 ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ ( -u _pi (,) 0 ) C_ ( -u _pi (,) 0 ) )
544 restopnb
 |-  ( ( ( ( topGen ` ran (,) ) e. Top /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. _V ) /\ ( ( -u _pi (,) 0 ) e. ( topGen ` ran (,) ) /\ ( -u _pi (,) 0 ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ ( -u _pi (,) 0 ) C_ ( -u _pi (,) 0 ) ) ) -> ( ( -u _pi (,) 0 ) e. ( topGen ` ran (,) ) <-> ( -u _pi (,) 0 ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) )
545 540 543 544 mp2an
 |-  ( ( -u _pi (,) 0 ) e. ( topGen ` ran (,) ) <-> ( -u _pi (,) 0 ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) )
546 303 545 mpbi
 |-  ( -u _pi (,) 0 ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
547 inss2
 |-  ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( -u _pi (,) 0 ) ) C_ ( -u _pi (,) 0 )
548 541 542 ssini
 |-  ( -u _pi (,) 0 ) C_ ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( -u _pi (,) 0 ) )
549 547 548 eqssi
 |-  ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( -u _pi (,) 0 ) ) = ( -u _pi (,) 0 )
550 201 oveq1i
 |-  ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
551 333 345 sstri
 |-  dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ RR
552 restabs
 |-  ( ( ( TopOpen ` CCfld ) e. Top /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) = ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) )
553 410 551 422 552 mp3an
 |-  ( ( ( TopOpen ` CCfld ) |`t RR ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) = ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
554 550 553 eqtr2i
 |-  ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) = ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
555 546 549 554 3eltr4i
 |-  ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( -u _pi (,) 0 ) ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
556 535 555 eqeltrdi
 |-  ( x = ( -u _pi (,) 0 ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) )
557 556 adantl
 |-  ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ x = ( -u _pi (,) 0 ) ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) )
558 neqne
 |-  ( -. x = ( -u _pi (,) 0 ) -> x =/= ( -u _pi (,) 0 ) )
559 elprn1
 |-  ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ x =/= ( -u _pi (,) 0 ) ) -> x = ( 0 (,) _pi ) )
560 558 559 sylan2
 |-  ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ -. x = ( -u _pi (,) 0 ) ) -> x = ( 0 (,) _pi ) )
561 ineq2
 |-  ( x = ( 0 (,) _pi ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) = ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( 0 (,) _pi ) ) )
562 223 ssriv
 |-  ( 0 (,) _pi ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) )
563 ssid
 |-  ( 0 (,) _pi ) C_ ( 0 (,) _pi )
564 199 562 563 3pm3.2i
 |-  ( ( 0 (,) _pi ) e. ( topGen ` ran (,) ) /\ ( 0 (,) _pi ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ ( 0 (,) _pi ) C_ ( 0 (,) _pi ) )
565 restopnb
 |-  ( ( ( ( topGen ` ran (,) ) e. Top /\ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. _V ) /\ ( ( 0 (,) _pi ) e. ( topGen ` ran (,) ) /\ ( 0 (,) _pi ) C_ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) /\ ( 0 (,) _pi ) C_ ( 0 (,) _pi ) ) ) -> ( ( 0 (,) _pi ) e. ( topGen ` ran (,) ) <-> ( 0 (,) _pi ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) ) )
566 540 564 565 mp2an
 |-  ( ( 0 (,) _pi ) e. ( topGen ` ran (,) ) <-> ( 0 (,) _pi ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) )
567 199 566 mpbi
 |-  ( 0 (,) _pi ) e. ( ( topGen ` ran (,) ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
568 inss2
 |-  ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( 0 (,) _pi ) ) C_ ( 0 (,) _pi )
569 562 563 ssini
 |-  ( 0 (,) _pi ) C_ ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( 0 (,) _pi ) )
570 568 569 eqssi
 |-  ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( 0 (,) _pi ) ) = ( 0 (,) _pi )
571 567 570 554 3eltr4i
 |-  ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i ( 0 (,) _pi ) ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
572 561 571 eqeltrdi
 |-  ( x = ( 0 (,) _pi ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) )
573 560 572 syl
 |-  ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ -. x = ( -u _pi (,) 0 ) ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) )
574 557 573 pm2.61dan
 |-  ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) )
575 574 adantl
 |-  ( ( T. /\ x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) e. ( ( TopOpen ` CCfld ) |`t dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) )
576 ssid
 |-  CC C_ CC
577 576 a1i
 |-  ( T. -> CC C_ CC )
578 394 395 577 constcncfg
 |-  ( T. -> ( x e. ( -u _pi (,) 0 ) |-> 0 ) e. ( ( -u _pi (,) 0 ) -cn-> CC ) )
579 578 mptru
 |-  ( x e. ( -u _pi (,) 0 ) |-> 0 ) e. ( ( -u _pi (,) 0 ) -cn-> CC )
580 579 a1i
 |-  ( x = ( -u _pi (,) 0 ) -> ( x e. ( -u _pi (,) 0 ) |-> 0 ) e. ( ( -u _pi (,) 0 ) -cn-> CC ) )
581 reseq2
 |-  ( x = ( -u _pi (,) 0 ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) 0 ) ) )
582 resabs1
 |-  ( ( -u _pi (,) 0 ) C_ ( -u _pi (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) 0 ) ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) )
583 240 582 ax-mp
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) 0 ) ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) )
584 583 311 eqtr4i
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) 0 ) ) = ( x e. ( -u _pi (,) 0 ) |-> 0 )
585 581 584 eqtrdi
 |-  ( x = ( -u _pi (,) 0 ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) = ( x e. ( -u _pi (,) 0 ) |-> 0 ) )
586 535 549 eqtrdi
 |-  ( x = ( -u _pi (,) 0 ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) = ( -u _pi (,) 0 ) )
587 586 oveq1d
 |-  ( x = ( -u _pi (,) 0 ) -> ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) = ( ( -u _pi (,) 0 ) -cn-> CC ) )
588 580 585 587 3eltr4d
 |-  ( x = ( -u _pi (,) 0 ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) )
589 588 adantl
 |-  ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ x = ( -u _pi (,) 0 ) ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) )
590 448 395 577 constcncfg
 |-  ( T. -> ( x e. ( 0 (,) _pi ) |-> 0 ) e. ( ( 0 (,) _pi ) -cn-> CC ) )
591 590 mptru
 |-  ( x e. ( 0 (,) _pi ) |-> 0 ) e. ( ( 0 (,) _pi ) -cn-> CC )
592 591 a1i
 |-  ( x = ( 0 (,) _pi ) -> ( x e. ( 0 (,) _pi ) |-> 0 ) e. ( ( 0 (,) _pi ) -cn-> CC ) )
593 reseq2
 |-  ( x = ( 0 (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) _pi ) ) )
594 resabs1
 |-  ( ( 0 (,) _pi ) C_ ( -u _pi (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) _pi ) ) = ( ( RR _D F ) |` ( 0 (,) _pi ) ) )
595 169 594 ax-mp
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) _pi ) ) = ( ( RR _D F ) |` ( 0 (,) _pi ) )
596 595 213 eqtr4i
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) _pi ) ) = ( x e. ( 0 (,) _pi ) |-> 0 )
597 593 596 eqtrdi
 |-  ( x = ( 0 (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) = ( x e. ( 0 (,) _pi ) |-> 0 ) )
598 561 570 eqtrdi
 |-  ( x = ( 0 (,) _pi ) -> ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) = ( 0 (,) _pi ) )
599 598 oveq1d
 |-  ( x = ( 0 (,) _pi ) -> ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) = ( ( 0 (,) _pi ) -cn-> CC ) )
600 592 597 599 3eltr4d
 |-  ( x = ( 0 (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) )
601 560 600 syl
 |-  ( ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } /\ -. x = ( -u _pi (,) 0 ) ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) )
602 589 601 pm2.61dan
 |-  ( x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) )
603 602 adantl
 |-  ( ( T. /\ x e. { ( -u _pi (,) 0 ) , ( 0 (,) _pi ) } ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` x ) e. ( ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) i^i x ) -cn-> CC ) )
604 336 342 534 575 603 cncfuni
 |-  ( T. -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -cn-> CC ) )
605 604 mptru
 |-  ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. ( dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) -cn-> CC )
606 oveq1
 |-  ( x = -u _pi -> ( x (,) +oo ) = ( -u _pi (,) +oo ) )
607 606 reseq2d
 |-  ( x = -u _pi -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) +oo ) ) )
608 iooss2
 |-  ( ( +oo e. RR* /\ _pi <_ +oo ) -> ( -u _pi (,) _pi ) C_ ( -u _pi (,) +oo ) )
609 376 453 608 mp2an
 |-  ( -u _pi (,) _pi ) C_ ( -u _pi (,) +oo )
610 resabs2
 |-  ( ( -u _pi (,) _pi ) C_ ( -u _pi (,) +oo ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) +oo ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
611 609 610 ax-mp
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -u _pi (,) +oo ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) )
612 607 611 eqtrdi
 |-  ( x = -u _pi -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
613 id
 |-  ( x = -u _pi -> x = -u _pi )
614 612 613 oveq12d
 |-  ( x = -u _pi -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi ) )
615 254 a1i
 |-  ( T. -> -u _pi e. CC )
616 313 394 395 615 constlimc
 |-  ( T. -> 0 e. ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC -u _pi ) )
617 616 mptru
 |-  0 e. ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC -u _pi )
618 311 oveq1i
 |-  ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC -u _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) limCC -u _pi )
619 337 a1i
 |-  ( T. -> ( RR _D F ) : dom ( RR _D F ) --> CC )
620 160 a1i
 |-  ( T. -> -u _pi e. RR )
621 153 a1i
 |-  ( T. -> 0 e. RR* )
622 166 a1i
 |-  ( T. -> -u _pi < 0 )
623 317 a1i
 |-  ( T. -> ( -u _pi (,) 0 ) C_ dom ( RR _D F ) )
624 238 a1i
 |-  ( T. -> 0 <_ _pi )
625 619 620 621 622 623 473 624 limcresioolb
 |-  ( T. -> ( ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) limCC -u _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi ) )
626 625 mptru
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) limCC -u _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi )
627 618 626 eqtri
 |-  ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC -u _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi )
628 617 627 eleqtri
 |-  0 e. ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi )
629 628 ne0ii
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi ) =/= (/)
630 629 a1i
 |-  ( x = -u _pi -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC -u _pi ) =/= (/) )
631 614 630 eqnetrd
 |-  ( x = -u _pi -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) =/= (/) )
632 631 adantl
 |-  ( ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ x = -u _pi ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) =/= (/) )
633 eldifi
 |-  ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x e. ( -u _pi [,) _pi ) )
634 161 a1i
 |-  ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> -u _pi e. RR* )
635 155 a1i
 |-  ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> _pi e. RR* )
636 icossre
 |-  ( ( -u _pi e. RR /\ _pi e. RR* ) -> ( -u _pi [,) _pi ) C_ RR )
637 160 155 636 mp2an
 |-  ( -u _pi [,) _pi ) C_ RR
638 637 sseli
 |-  ( x e. ( -u _pi [,) _pi ) -> x e. RR )
639 638 adantr
 |-  ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> x e. RR )
640 160 a1i
 |-  ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> -u _pi e. RR )
641 icogelb
 |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi [,) _pi ) ) -> -u _pi <_ x )
642 161 155 641 mp3an12
 |-  ( x e. ( -u _pi [,) _pi ) -> -u _pi <_ x )
643 642 adantr
 |-  ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> -u _pi <_ x )
644 neqne
 |-  ( -. x = -u _pi -> x =/= -u _pi )
645 644 adantl
 |-  ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> x =/= -u _pi )
646 640 639 643 645 leneltd
 |-  ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> -u _pi < x )
647 icoltub
 |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi [,) _pi ) ) -> x < _pi )
648 161 155 647 mp3an12
 |-  ( x e. ( -u _pi [,) _pi ) -> x < _pi )
649 648 adantr
 |-  ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> x < _pi )
650 634 635 639 646 649 eliood
 |-  ( ( x e. ( -u _pi [,) _pi ) /\ -. x = -u _pi ) -> x e. ( -u _pi (,) _pi ) )
651 633 650 sylan
 |-  ( ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = -u _pi ) -> x e. ( -u _pi (,) _pi ) )
652 eldifn
 |-  ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
653 652 adantr
 |-  ( ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = -u _pi ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
654 651 653 eldifd
 |-  ( ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = -u _pi ) -> x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) )
655 oveq1
 |-  ( x = 0 -> ( x (,) +oo ) = ( 0 (,) +oo ) )
656 655 reseq2d
 |-  ( x = 0 -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) )
657 656 360 oveq12d
 |-  ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) = ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) limCC 0 ) )
658 215 448 395 395 constlimc
 |-  ( T. -> 0 e. ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC 0 ) )
659 658 mptru
 |-  0 e. ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC 0 )
660 resres
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) = ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( 0 (,) +oo ) ) )
661 iooin
 |-  ( ( ( -u _pi e. RR* /\ _pi e. RR* ) /\ ( 0 e. RR* /\ +oo e. RR* ) ) -> ( ( -u _pi (,) _pi ) i^i ( 0 (,) +oo ) ) = ( if ( -u _pi <_ 0 , 0 , -u _pi ) (,) if ( _pi <_ +oo , _pi , +oo ) ) )
662 161 155 153 376 661 mp4an
 |-  ( ( -u _pi (,) _pi ) i^i ( 0 (,) +oo ) ) = ( if ( -u _pi <_ 0 , 0 , -u _pi ) (,) if ( _pi <_ +oo , _pi , +oo ) )
663 167 iftruei
 |-  if ( -u _pi <_ 0 , 0 , -u _pi ) = 0
664 453 iftruei
 |-  if ( _pi <_ +oo , _pi , +oo ) = _pi
665 663 664 oveq12i
 |-  ( if ( -u _pi <_ 0 , 0 , -u _pi ) (,) if ( _pi <_ +oo , _pi , +oo ) ) = ( 0 (,) _pi )
666 662 665 eqtri
 |-  ( ( -u _pi (,) _pi ) i^i ( 0 (,) +oo ) ) = ( 0 (,) _pi )
667 666 reseq2i
 |-  ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( 0 (,) +oo ) ) ) = ( ( RR _D F ) |` ( 0 (,) _pi ) )
668 213 eqcomi
 |-  ( ( RR _D F ) |` ( 0 (,) _pi ) ) = ( x e. ( 0 (,) _pi ) |-> 0 )
669 660 667 668 3eqtrri
 |-  ( x e. ( 0 (,) _pi ) |-> 0 ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) )
670 669 oveq1i
 |-  ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC 0 ) = ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) limCC 0 )
671 659 670 eleqtri
 |-  0 e. ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) limCC 0 )
672 671 ne0ii
 |-  ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) limCC 0 ) =/= (/)
673 672 a1i
 |-  ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( 0 (,) +oo ) ) limCC 0 ) =/= (/) )
674 657 673 eqnetrd
 |-  ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) =/= (/) )
675 654 326 674 3syl
 |-  ( ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = -u _pi ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) =/= (/) )
676 632 675 pm2.61dan
 |-  ( x e. ( ( -u _pi [,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) limCC x ) =/= (/) )
677 oveq2
 |-  ( x = _pi -> ( -oo (,) x ) = ( -oo (,) _pi ) )
678 677 reseq2d
 |-  ( x = _pi -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) _pi ) ) )
679 id
 |-  ( x = _pi -> x = _pi )
680 678 679 oveq12d
 |-  ( x = _pi -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) = ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) _pi ) ) limCC _pi ) )
681 iooss1
 |-  ( ( -oo e. RR* /\ -oo <_ -u _pi ) -> ( -u _pi (,) _pi ) C_ ( -oo (,) _pi ) )
682 365 389 681 mp2an
 |-  ( -u _pi (,) _pi ) C_ ( -oo (,) _pi )
683 resabs2
 |-  ( ( -u _pi (,) _pi ) C_ ( -oo (,) _pi ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) _pi ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
684 682 683 ax-mp
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) _pi ) ) = ( ( RR _D F ) |` ( -u _pi (,) _pi ) )
685 684 oveq1i
 |-  ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) _pi ) ) limCC _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi )
686 680 685 eqtrdi
 |-  ( x = _pi -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) )
687 215 448 395 57 constlimc
 |-  ( T. -> 0 e. ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC _pi ) )
688 687 mptru
 |-  0 e. ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC _pi )
689 213 oveq1i
 |-  ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC _pi ) = ( ( ( RR _D F ) |` ( 0 (,) _pi ) ) limCC _pi )
690 120 a1i
 |-  ( T. -> _pi e. RR )
691 72 a1i
 |-  ( T. -> 0 < _pi )
692 219 a1i
 |-  ( T. -> ( 0 (,) _pi ) C_ dom ( RR _D F ) )
693 167 a1i
 |-  ( T. -> -u _pi <_ 0 )
694 619 621 690 691 692 414 693 limcresiooub
 |-  ( T. -> ( ( ( RR _D F ) |` ( 0 (,) _pi ) ) limCC _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) )
695 694 mptru
 |-  ( ( ( RR _D F ) |` ( 0 (,) _pi ) ) limCC _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi )
696 689 695 eqtri
 |-  ( ( x e. ( 0 (,) _pi ) |-> 0 ) limCC _pi ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi )
697 688 696 eleqtri
 |-  0 e. ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi )
698 697 ne0ii
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) =/= (/)
699 698 a1i
 |-  ( x = _pi -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) limCC _pi ) =/= (/) )
700 686 699 eqnetrd
 |-  ( x = _pi -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) =/= (/) )
701 700 adantl
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ x = _pi ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) =/= (/) )
702 161 a1i
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> -u _pi e. RR* )
703 155 a1i
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> _pi e. RR* )
704 negpitopissre
 |-  ( -u _pi (,] _pi ) C_ RR
705 eldifi
 |-  ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x e. ( -u _pi (,] _pi ) )
706 704 705 sselid
 |-  ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x e. RR )
707 706 adantr
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> x e. RR )
708 161 a1i
 |-  ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> -u _pi e. RR* )
709 155 a1i
 |-  ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> _pi e. RR* )
710 iocgtlb
 |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi (,] _pi ) ) -> -u _pi < x )
711 708 709 705 710 syl3anc
 |-  ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> -u _pi < x )
712 711 adantr
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> -u _pi < x )
713 120 a1i
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> _pi e. RR )
714 iocleub
 |-  ( ( -u _pi e. RR* /\ _pi e. RR* /\ x e. ( -u _pi (,] _pi ) ) -> x <_ _pi )
715 708 709 705 714 syl3anc
 |-  ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> x <_ _pi )
716 715 adantr
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> x <_ _pi )
717 id
 |-  ( _pi = x -> _pi = x )
718 717 eqcomd
 |-  ( _pi = x -> x = _pi )
719 718 necon3bi
 |-  ( -. x = _pi -> _pi =/= x )
720 719 adantl
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> _pi =/= x )
721 707 713 716 720 leneltd
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> x < _pi )
722 702 703 707 712 721 eliood
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> x e. ( -u _pi (,) _pi ) )
723 eldifn
 |-  ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
724 723 adantr
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> -. x e. dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) )
725 722 724 eldifd
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> x e. ( ( -u _pi (,) _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) )
726 oveq2
 |-  ( x = 0 -> ( -oo (,) x ) = ( -oo (,) 0 ) )
727 726 reseq2d
 |-  ( x = 0 -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) )
728 727 360 oveq12d
 |-  ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) = ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) limCC 0 ) )
729 313 394 395 395 constlimc
 |-  ( T. -> 0 e. ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC 0 ) )
730 729 mptru
 |-  0 e. ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC 0 )
731 resres
 |-  ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) = ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) 0 ) ) )
732 iooin
 |-  ( ( ( -u _pi e. RR* /\ _pi e. RR* ) /\ ( -oo e. RR* /\ 0 e. RR* ) ) -> ( ( -u _pi (,) _pi ) i^i ( -oo (,) 0 ) ) = ( if ( -u _pi <_ -oo , -oo , -u _pi ) (,) if ( _pi <_ 0 , _pi , 0 ) ) )
733 161 155 365 153 732 mp4an
 |-  ( ( -u _pi (,) _pi ) i^i ( -oo (,) 0 ) ) = ( if ( -u _pi <_ -oo , -oo , -u _pi ) (,) if ( _pi <_ 0 , _pi , 0 ) )
734 mnflt
 |-  ( -u _pi e. RR -> -oo < -u _pi )
735 160 734 ax-mp
 |-  -oo < -u _pi
736 xrltnle
 |-  ( ( -oo e. RR* /\ -u _pi e. RR* ) -> ( -oo < -u _pi <-> -. -u _pi <_ -oo ) )
737 365 161 736 mp2an
 |-  ( -oo < -u _pi <-> -. -u _pi <_ -oo )
738 735 737 mpbi
 |-  -. -u _pi <_ -oo
739 738 iffalsei
 |-  if ( -u _pi <_ -oo , -oo , -u _pi ) = -u _pi
740 xrltnle
 |-  ( ( 0 e. RR* /\ _pi e. RR* ) -> ( 0 < _pi <-> -. _pi <_ 0 ) )
741 153 155 740 mp2an
 |-  ( 0 < _pi <-> -. _pi <_ 0 )
742 72 741 mpbi
 |-  -. _pi <_ 0
743 742 iffalsei
 |-  if ( _pi <_ 0 , _pi , 0 ) = 0
744 739 743 oveq12i
 |-  ( if ( -u _pi <_ -oo , -oo , -u _pi ) (,) if ( _pi <_ 0 , _pi , 0 ) ) = ( -u _pi (,) 0 )
745 733 744 eqtri
 |-  ( ( -u _pi (,) _pi ) i^i ( -oo (,) 0 ) ) = ( -u _pi (,) 0 )
746 745 reseq2i
 |-  ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) 0 ) ) ) = ( ( RR _D F ) |` ( -u _pi (,) 0 ) )
747 311 eqcomi
 |-  ( ( RR _D F ) |` ( -u _pi (,) 0 ) ) = ( x e. ( -u _pi (,) 0 ) |-> 0 )
748 731 746 747 3eqtrri
 |-  ( x e. ( -u _pi (,) 0 ) |-> 0 ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) )
749 748 oveq1i
 |-  ( ( x e. ( -u _pi (,) 0 ) |-> 0 ) limCC 0 ) = ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) limCC 0 )
750 730 749 eleqtri
 |-  0 e. ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) limCC 0 )
751 750 ne0ii
 |-  ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) limCC 0 ) =/= (/)
752 751 a1i
 |-  ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) 0 ) ) limCC 0 ) =/= (/) )
753 728 752 eqnetrd
 |-  ( x = 0 -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) =/= (/) )
754 725 326 753 3syl
 |-  ( ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) /\ -. x = _pi ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) =/= (/) )
755 701 754 pm2.61dan
 |-  ( x e. ( ( -u _pi (,] _pi ) \ dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) -> ( ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) limCC x ) =/= (/) )
756 eqid
 |-  ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) = ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 )
757 ioosscn
 |-  ( ( X - ( X mod T ) ) (,) X ) C_ CC
758 757 a1i
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( ( X - ( X mod T ) ) (,) X ) C_ CC )
759 1cnd
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> 1 e. CC )
760 27 a1i
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> X e. CC )
761 756 758 759 760 constlimc
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> 1 e. ( ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) limCC X ) )
762 ioossioc
 |-  ( 0 (,) _pi ) C_ ( 0 (,] _pi )
763 762 sseli
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X mod T ) e. ( 0 (,] _pi ) )
764 763 iftrued
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = 1 )
765 210 a1i
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> F : RR --> CC )
766 modcl
 |-  ( ( X e. RR /\ T e. RR+ ) -> ( X mod T ) e. RR )
767 3 135 766 mp2an
 |-  ( X mod T ) e. RR
768 3 767 resubcli
 |-  ( X - ( X mod T ) ) e. RR
769 768 rexri
 |-  ( X - ( X mod T ) ) e. RR*
770 769 a1i
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X - ( X mod T ) ) e. RR* )
771 3 a1i
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> X e. RR )
772 elioore
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X mod T ) e. RR )
773 ioogtlb
 |-  ( ( 0 e. RR* /\ _pi e. RR* /\ ( X mod T ) e. ( 0 (,) _pi ) ) -> 0 < ( X mod T ) )
774 153 155 773 mp3an12
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> 0 < ( X mod T ) )
775 772 774 elrpd
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X mod T ) e. RR+ )
776 771 775 ltsubrpd
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X - ( X mod T ) ) < X )
777 ioossre
 |-  ( ( X - ( X mod T ) ) (,) X ) C_ RR
778 777 a1i
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( ( X - ( X mod T ) ) (,) X ) C_ RR )
779 365 a1i
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> -oo e. RR* )
780 mnflt
 |-  ( ( X - ( X mod T ) ) e. RR -> -oo < ( X - ( X mod T ) ) )
781 xrltle
 |-  ( ( -oo e. RR* /\ ( X - ( X mod T ) ) e. RR* ) -> ( -oo < ( X - ( X mod T ) ) -> -oo <_ ( X - ( X mod T ) ) ) )
782 365 769 781 mp2an
 |-  ( -oo < ( X - ( X mod T ) ) -> -oo <_ ( X - ( X mod T ) ) )
783 768 780 782 mp2b
 |-  -oo <_ ( X - ( X mod T ) )
784 783 a1i
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> -oo <_ ( X - ( X mod T ) ) )
785 765 770 771 776 778 779 784 limcresiooub
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( ( F |` ( ( X - ( X mod T ) ) (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) X ) ) limCC X ) )
786 iooltub
 |-  ( ( 0 e. RR* /\ _pi e. RR* /\ ( X mod T ) e. ( 0 (,) _pi ) ) -> ( X mod T ) < _pi )
787 153 155 786 mp3an12
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( X mod T ) < _pi )
788 210 a1i
 |-  ( ( X mod T ) < _pi -> F : RR --> CC )
789 777 a1i
 |-  ( ( X mod T ) < _pi -> ( ( X - ( X mod T ) ) (,) X ) C_ RR )
790 788 789 feqresmpt
 |-  ( ( X mod T ) < _pi -> ( F |` ( ( X - ( X mod T ) ) (,) X ) ) = ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> ( F ` x ) ) )
791 elioore
 |-  ( x e. ( ( X - ( X mod T ) ) (,) X ) -> x e. RR )
792 791 110 147 sylancl
 |-  ( x e. ( ( X - ( X mod T ) ) (,) X ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
793 792 adantl
 |-  ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
794 791 adantl
 |-  ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> x e. RR )
795 135 a1i
 |-  ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> T e. RR+ )
796 794 795 modcld
 |-  ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( x mod T ) e. RR )
797 767 a1i
 |-  ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( X mod T ) e. RR )
798 120 a1i
 |-  ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> _pi e. RR )
799 3 a1i
 |-  ( x e. ( ( X - ( X mod T ) ) (,) X ) -> X e. RR )
800 135 a1i
 |-  ( x e. ( ( X - ( X mod T ) ) (,) X ) -> T e. RR+ )
801 ioossico
 |-  ( ( X - ( X mod T ) ) (,) X ) C_ ( ( X - ( X mod T ) ) [,) X )
802 801 sseli
 |-  ( x e. ( ( X - ( X mod T ) ) (,) X ) -> x e. ( ( X - ( X mod T ) ) [,) X ) )
803 799 800 802 ltmod
 |-  ( x e. ( ( X - ( X mod T ) ) (,) X ) -> ( x mod T ) < ( X mod T ) )
804 803 adantl
 |-  ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( x mod T ) < ( X mod T ) )
805 simpl
 |-  ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( X mod T ) < _pi )
806 796 797 798 804 805 lttrd
 |-  ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( x mod T ) < _pi )
807 806 iftrued
 |-  ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = 1 )
808 793 807 eqtrd
 |-  ( ( ( X mod T ) < _pi /\ x e. ( ( X - ( X mod T ) ) (,) X ) ) -> ( F ` x ) = 1 )
809 808 mpteq2dva
 |-  ( ( X mod T ) < _pi -> ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> ( F ` x ) ) = ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) )
810 790 809 eqtrd
 |-  ( ( X mod T ) < _pi -> ( F |` ( ( X - ( X mod T ) ) (,) X ) ) = ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) )
811 787 810 syl
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( F |` ( ( X - ( X mod T ) ) (,) X ) ) = ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) )
812 811 oveq1d
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( ( F |` ( ( X - ( X mod T ) ) (,) X ) ) limCC X ) = ( ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) limCC X ) )
813 785 812 eqtr3d
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( x e. ( ( X - ( X mod T ) ) (,) X ) |-> 1 ) limCC X ) )
814 761 764 813 3eltr4d
 |-  ( ( X mod T ) e. ( 0 (,) _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) )
815 eqid
 |-  ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) = ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 )
816 ioossre
 |-  ( ( X - _pi ) (,) X ) C_ RR
817 816 a1i
 |-  ( T. -> ( ( X - _pi ) (,) X ) C_ RR )
818 817 208 sstrdi
 |-  ( T. -> ( ( X - _pi ) (,) X ) C_ CC )
819 27 a1i
 |-  ( T. -> X e. CC )
820 815 818 306 819 constlimc
 |-  ( T. -> -u 1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) limCC X ) )
821 820 mptru
 |-  -u 1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) limCC X )
822 821 a1i
 |-  ( ( X mod T ) = 0 -> -u 1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) limCC X ) )
823 id
 |-  ( ( X mod T ) = 0 -> ( X mod T ) = 0 )
824 lbioc
 |-  -. 0 e. ( 0 (,] _pi )
825 824 a1i
 |-  ( ( X mod T ) = 0 -> -. 0 e. ( 0 (,] _pi ) )
826 823 825 eqneltrd
 |-  ( ( X mod T ) = 0 -> -. ( X mod T ) e. ( 0 (,] _pi ) )
827 826 iffalsed
 |-  ( ( X mod T ) = 0 -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = -u 1 )
828 210 a1i
 |-  ( ( X mod T ) = 0 -> F : RR --> CC )
829 816 a1i
 |-  ( ( X mod T ) = 0 -> ( ( X - _pi ) (,) X ) C_ RR )
830 828 829 feqresmpt
 |-  ( ( X mod T ) = 0 -> ( F |` ( ( X - _pi ) (,) X ) ) = ( x e. ( ( X - _pi ) (,) X ) |-> ( F ` x ) ) )
831 829 sselda
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> x e. RR )
832 831 110 147 sylancl
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
833 120 a1i
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> _pi e. RR )
834 135 a1i
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> T e. RR+ )
835 831 834 modcld
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( x mod T ) e. RR )
836 3 120 resubcli
 |-  ( X - _pi ) e. RR
837 836 a1i
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( X - _pi ) e. RR )
838 122 a1i
 |-  ( x e. ( ( X - _pi ) (,) X ) -> T e. RR )
839 837 838 readdcld
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( X - _pi ) + T ) e. RR )
840 elioore
 |-  ( x e. ( ( X - _pi ) (,) X ) -> x e. RR )
841 840 838 readdcld
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( x + T ) e. RR )
842 3 a1i
 |-  ( x e. ( ( X - _pi ) (,) X ) -> X e. RR )
843 836 rexri
 |-  ( X - _pi ) e. RR*
844 843 a1i
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( X - _pi ) e. RR* )
845 842 rexrd
 |-  ( x e. ( ( X - _pi ) (,) X ) -> X e. RR* )
846 id
 |-  ( x e. ( ( X - _pi ) (,) X ) -> x e. ( ( X - _pi ) (,) X ) )
847 ioogtlb
 |-  ( ( ( X - _pi ) e. RR* /\ X e. RR* /\ x e. ( ( X - _pi ) (,) X ) ) -> ( X - _pi ) < x )
848 844 845 846 847 syl3anc
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( X - _pi ) < x )
849 837 840 838 848 ltadd1dd
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( X - _pi ) + T ) < ( x + T ) )
850 839 841 842 849 ltsub1dd
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( X - _pi ) + T ) - X ) < ( ( x + T ) - X ) )
851 850 adantl
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( X - _pi ) + T ) - X ) < ( ( x + T ) - X ) )
852 252 oveq2i
 |-  ( ( X - _pi ) + T ) = ( ( X - _pi ) + ( _pi + _pi ) )
853 56 56 addcli
 |-  ( _pi + _pi ) e. CC
854 subadd23
 |-  ( ( X e. CC /\ _pi e. CC /\ ( _pi + _pi ) e. CC ) -> ( ( X - _pi ) + ( _pi + _pi ) ) = ( X + ( ( _pi + _pi ) - _pi ) ) )
855 27 56 853 854 mp3an
 |-  ( ( X - _pi ) + ( _pi + _pi ) ) = ( X + ( ( _pi + _pi ) - _pi ) )
856 56 56 pncan3oi
 |-  ( ( _pi + _pi ) - _pi ) = _pi
857 856 oveq2i
 |-  ( X + ( ( _pi + _pi ) - _pi ) ) = ( X + _pi )
858 852 855 857 3eqtri
 |-  ( ( X - _pi ) + T ) = ( X + _pi )
859 858 oveq1i
 |-  ( ( ( X - _pi ) + T ) - X ) = ( ( X + _pi ) - X )
860 pncan2
 |-  ( ( X e. CC /\ _pi e. CC ) -> ( ( X + _pi ) - X ) = _pi )
861 27 56 860 mp2an
 |-  ( ( X + _pi ) - X ) = _pi
862 859 861 eqtr2i
 |-  _pi = ( ( ( X - _pi ) + T ) - X )
863 862 a1i
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> _pi = ( ( ( X - _pi ) + T ) - X ) )
864 841 842 resubcld
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( x + T ) - X ) e. RR )
865 modabs2
 |-  ( ( ( ( x + T ) - X ) e. RR /\ T e. RR+ ) -> ( ( ( ( x + T ) - X ) mod T ) mod T ) = ( ( ( x + T ) - X ) mod T ) )
866 864 135 865 sylancl
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( ( x + T ) - X ) mod T ) mod T ) = ( ( ( x + T ) - X ) mod T ) )
867 135 a1i
 |-  ( x e. ( ( X - _pi ) (,) X ) -> T e. RR+ )
868 0red
 |-  ( x e. ( ( X - _pi ) (,) X ) -> 0 e. RR )
869 839 842 resubcld
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( X - _pi ) + T ) - X ) e. RR )
870 72 862 breqtri
 |-  0 < ( ( ( X - _pi ) + T ) - X )
871 870 a1i
 |-  ( x e. ( ( X - _pi ) (,) X ) -> 0 < ( ( ( X - _pi ) + T ) - X ) )
872 868 869 864 871 850 lttrd
 |-  ( x e. ( ( X - _pi ) (,) X ) -> 0 < ( ( x + T ) - X ) )
873 868 864 872 ltled
 |-  ( x e. ( ( X - _pi ) (,) X ) -> 0 <_ ( ( x + T ) - X ) )
874 842 838 readdcld
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( X + T ) e. RR )
875 iooltub
 |-  ( ( ( X - _pi ) e. RR* /\ X e. RR* /\ x e. ( ( X - _pi ) (,) X ) ) -> x < X )
876 844 845 846 875 syl3anc
 |-  ( x e. ( ( X - _pi ) (,) X ) -> x < X )
877 840 842 838 876 ltadd1dd
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( x + T ) < ( X + T ) )
878 841 874 842 877 ltsub1dd
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( x + T ) - X ) < ( ( X + T ) - X ) )
879 pncan2
 |-  ( ( X e. CC /\ T e. CC ) -> ( ( X + T ) - X ) = T )
880 27 123 879 mp2an
 |-  ( ( X + T ) - X ) = T
881 878 880 breqtrdi
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( x + T ) - X ) < T )
882 modid
 |-  ( ( ( ( ( x + T ) - X ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( ( x + T ) - X ) /\ ( ( x + T ) - X ) < T ) ) -> ( ( ( x + T ) - X ) mod T ) = ( ( x + T ) - X ) )
883 864 867 873 881 882 syl22anc
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( x + T ) - X ) mod T ) = ( ( x + T ) - X ) )
884 866 883 eqtr2d
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( x + T ) - X ) = ( ( ( ( x + T ) - X ) mod T ) mod T ) )
885 884 adantl
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( x + T ) - X ) = ( ( ( ( x + T ) - X ) mod T ) mod T ) )
886 oveq2
 |-  ( ( X mod T ) = 0 -> ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) = ( ( ( ( x + T ) - X ) mod T ) + 0 ) )
887 886 adantr
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) = ( ( ( ( x + T ) - X ) mod T ) + 0 ) )
888 864 867 modcld
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( x + T ) - X ) mod T ) e. RR )
889 888 recnd
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( x + T ) - X ) mod T ) e. CC )
890 889 addid1d
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( ( x + T ) - X ) mod T ) + 0 ) = ( ( ( x + T ) - X ) mod T ) )
891 890 adantl
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( ( x + T ) - X ) mod T ) + 0 ) = ( ( ( x + T ) - X ) mod T ) )
892 887 891 eqtr2d
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( x + T ) - X ) mod T ) = ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) )
893 892 oveq1d
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( ( x + T ) - X ) mod T ) mod T ) = ( ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) mod T ) )
894 modaddabs
 |-  ( ( ( ( x + T ) - X ) e. RR /\ X e. RR /\ T e. RR+ ) -> ( ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) mod T ) = ( ( ( ( x + T ) - X ) + X ) mod T ) )
895 864 842 867 894 syl3anc
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) mod T ) = ( ( ( ( x + T ) - X ) + X ) mod T ) )
896 895 adantl
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( ( ( x + T ) - X ) mod T ) + ( X mod T ) ) mod T ) = ( ( ( ( x + T ) - X ) + X ) mod T ) )
897 885 893 896 3eqtrd
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( x + T ) - X ) = ( ( ( ( x + T ) - X ) + X ) mod T ) )
898 145 recnd
 |-  ( x e. RR -> ( x + T ) e. CC )
899 27 a1i
 |-  ( x e. RR -> X e. CC )
900 898 899 npcand
 |-  ( x e. RR -> ( ( ( x + T ) - X ) + X ) = ( x + T ) )
901 124 a1i
 |-  ( x e. RR -> ( 1 x. T ) = T )
902 901 oveq2d
 |-  ( x e. RR -> ( x + ( 1 x. T ) ) = ( x + T ) )
903 900 902 eqtr4d
 |-  ( x e. RR -> ( ( ( x + T ) - X ) + X ) = ( x + ( 1 x. T ) ) )
904 903 oveq1d
 |-  ( x e. RR -> ( ( ( ( x + T ) - X ) + X ) mod T ) = ( ( x + ( 1 x. T ) ) mod T ) )
905 840 904 syl
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( ( ( ( x + T ) - X ) + X ) mod T ) = ( ( x + ( 1 x. T ) ) mod T ) )
906 905 adantl
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( ( ( x + T ) - X ) + X ) mod T ) = ( ( x + ( 1 x. T ) ) mod T ) )
907 1zzd
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> 1 e. ZZ )
908 831 834 907 138 syl3anc
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( x + ( 1 x. T ) ) mod T ) = ( x mod T ) )
909 897 906 908 3eqtrrd
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( x mod T ) = ( ( x + T ) - X ) )
910 851 863 909 3brtr4d
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> _pi < ( x mod T ) )
911 833 835 910 ltled
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> _pi <_ ( x mod T ) )
912 833 835 911 lensymd
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> -. ( x mod T ) < _pi )
913 912 iffalsed
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = -u 1 )
914 832 913 eqtrd
 |-  ( ( ( X mod T ) = 0 /\ x e. ( ( X - _pi ) (,) X ) ) -> ( F ` x ) = -u 1 )
915 914 mpteq2dva
 |-  ( ( X mod T ) = 0 -> ( x e. ( ( X - _pi ) (,) X ) |-> ( F ` x ) ) = ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) )
916 830 915 eqtr2d
 |-  ( ( X mod T ) = 0 -> ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) = ( F |` ( ( X - _pi ) (,) X ) ) )
917 916 oveq1d
 |-  ( ( X mod T ) = 0 -> ( ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) limCC X ) = ( ( F |` ( ( X - _pi ) (,) X ) ) limCC X ) )
918 843 a1i
 |-  ( T. -> ( X - _pi ) e. RR* )
919 3 a1i
 |-  ( T. -> X e. RR )
920 ltsubrp
 |-  ( ( X e. RR /\ _pi e. RR+ ) -> ( X - _pi ) < X )
921 3 184 920 mp2an
 |-  ( X - _pi ) < X
922 921 a1i
 |-  ( T. -> ( X - _pi ) < X )
923 mnflt
 |-  ( ( X - _pi ) e. RR -> -oo < ( X - _pi ) )
924 xrltle
 |-  ( ( -oo e. RR* /\ ( X - _pi ) e. RR* ) -> ( -oo < ( X - _pi ) -> -oo <_ ( X - _pi ) ) )
925 365 843 924 mp2an
 |-  ( -oo < ( X - _pi ) -> -oo <_ ( X - _pi ) )
926 836 923 925 mp2b
 |-  -oo <_ ( X - _pi )
927 926 a1i
 |-  ( T. -> -oo <_ ( X - _pi ) )
928 363 918 919 922 817 366 927 limcresiooub
 |-  ( T. -> ( ( F |` ( ( X - _pi ) (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) X ) ) limCC X ) )
929 928 mptru
 |-  ( ( F |` ( ( X - _pi ) (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) X ) ) limCC X )
930 917 929 eqtr2di
 |-  ( ( X mod T ) = 0 -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( x e. ( ( X - _pi ) (,) X ) |-> -u 1 ) limCC X ) )
931 822 827 930 3eltr4d
 |-  ( ( X mod T ) = 0 -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) )
932 931 adantl
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ ( X mod T ) = 0 ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) )
933 155 a1i
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> _pi e. RR* )
934 122 rexri
 |-  T e. RR*
935 934 a1i
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> T e. RR* )
936 767 rexri
 |-  ( X mod T ) e. RR*
937 936 a1i
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) e. RR* )
938 120 a1i
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> _pi e. RR )
939 767 a1i
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) e. RR )
940 pm4.56
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) <-> -. ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) )
941 940 biimpi
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> -. ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) )
942 olc
 |-  ( ( X mod T ) = 0 -> ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) )
943 942 adantl
 |-  ( ( ( X mod T ) < _pi /\ ( X mod T ) = 0 ) -> ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) )
944 153 a1i
 |-  ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> 0 e. RR* )
945 155 a1i
 |-  ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> _pi e. RR* )
946 767 a1i
 |-  ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> ( X mod T ) e. RR )
947 0red
 |-  ( ( X mod T ) =/= 0 -> 0 e. RR )
948 767 a1i
 |-  ( ( X mod T ) =/= 0 -> ( X mod T ) e. RR )
949 modge0
 |-  ( ( X e. RR /\ T e. RR+ ) -> 0 <_ ( X mod T ) )
950 3 135 949 mp2an
 |-  0 <_ ( X mod T )
951 950 a1i
 |-  ( ( X mod T ) =/= 0 -> 0 <_ ( X mod T ) )
952 id
 |-  ( ( X mod T ) =/= 0 -> ( X mod T ) =/= 0 )
953 947 948 951 952 leneltd
 |-  ( ( X mod T ) =/= 0 -> 0 < ( X mod T ) )
954 953 adantl
 |-  ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> 0 < ( X mod T ) )
955 simpl
 |-  ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> ( X mod T ) < _pi )
956 944 945 946 954 955 eliood
 |-  ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> ( X mod T ) e. ( 0 (,) _pi ) )
957 956 orcd
 |-  ( ( ( X mod T ) < _pi /\ ( X mod T ) =/= 0 ) -> ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) )
958 943 957 pm2.61dane
 |-  ( ( X mod T ) < _pi -> ( ( X mod T ) e. ( 0 (,) _pi ) \/ ( X mod T ) = 0 ) )
959 941 958 nsyl
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> -. ( X mod T ) < _pi )
960 938 939 959 nltled
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> _pi <_ ( X mod T ) )
961 modlt
 |-  ( ( X e. RR /\ T e. RR+ ) -> ( X mod T ) < T )
962 3 135 961 mp2an
 |-  ( X mod T ) < T
963 962 a1i
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) < T )
964 933 935 937 960 963 elicod
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> ( X mod T ) e. ( _pi [,) T ) )
965 eqid
 |-  ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) = ( x e. ( ( X - _pi ) (,) X ) |-> 1 )
966 965 818 204 819 constlimc
 |-  ( T. -> 1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) limCC X ) )
967 966 mptru
 |-  1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) limCC X )
968 967 a1i
 |-  ( ( X mod T ) = _pi -> 1 e. ( ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) limCC X ) )
969 id
 |-  ( ( X mod T ) = _pi -> ( X mod T ) = _pi )
970 ubioc1
 |-  ( ( 0 e. RR* /\ _pi e. RR* /\ 0 < _pi ) -> _pi e. ( 0 (,] _pi ) )
971 153 155 72 970 mp3an
 |-  _pi e. ( 0 (,] _pi )
972 969 971 eqeltrdi
 |-  ( ( X mod T ) = _pi -> ( X mod T ) e. ( 0 (,] _pi ) )
973 972 iftrued
 |-  ( ( X mod T ) = _pi -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = 1 )
974 363 817 feqresmpt
 |-  ( T. -> ( F |` ( ( X - _pi ) (,) X ) ) = ( x e. ( ( X - _pi ) (,) X ) |-> ( F ` x ) ) )
975 974 mptru
 |-  ( F |` ( ( X - _pi ) (,) X ) ) = ( x e. ( ( X - _pi ) (,) X ) |-> ( F ` x ) )
976 840 110 147 sylancl
 |-  ( x e. ( ( X - _pi ) (,) X ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
977 976 adantl
 |-  ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
978 simpr
 |-  ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> x e. ( ( X - _pi ) (,) X ) )
979 969 eqcomd
 |-  ( ( X mod T ) = _pi -> _pi = ( X mod T ) )
980 979 oveq2d
 |-  ( ( X mod T ) = _pi -> ( X - _pi ) = ( X - ( X mod T ) ) )
981 980 oveq1d
 |-  ( ( X mod T ) = _pi -> ( ( X - _pi ) (,) X ) = ( ( X - ( X mod T ) ) (,) X ) )
982 981 adantr
 |-  ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( ( X - _pi ) (,) X ) = ( ( X - ( X mod T ) ) (,) X ) )
983 978 982 eleqtrd
 |-  ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> x e. ( ( X - ( X mod T ) ) (,) X ) )
984 983 803 syl
 |-  ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( x mod T ) < ( X mod T ) )
985 simpl
 |-  ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( X mod T ) = _pi )
986 984 985 breqtrd
 |-  ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( x mod T ) < _pi )
987 986 iftrued
 |-  ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = 1 )
988 977 987 eqtrd
 |-  ( ( ( X mod T ) = _pi /\ x e. ( ( X - _pi ) (,) X ) ) -> ( F ` x ) = 1 )
989 988 mpteq2dva
 |-  ( ( X mod T ) = _pi -> ( x e. ( ( X - _pi ) (,) X ) |-> ( F ` x ) ) = ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) )
990 975 989 eqtr2id
 |-  ( ( X mod T ) = _pi -> ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) = ( F |` ( ( X - _pi ) (,) X ) ) )
991 990 oveq1d
 |-  ( ( X mod T ) = _pi -> ( ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) limCC X ) = ( ( F |` ( ( X - _pi ) (,) X ) ) limCC X ) )
992 991 929 eqtr2di
 |-  ( ( X mod T ) = _pi -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( x e. ( ( X - _pi ) (,) X ) |-> 1 ) limCC X ) )
993 968 973 992 3eltr4d
 |-  ( ( X mod T ) = _pi -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) )
994 993 adantl
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ ( X mod T ) = _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) )
995 155 a1i
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> _pi e. RR* )
996 934 a1i
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> T e. RR* )
997 767 a1i
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> ( X mod T ) e. RR )
998 120 a1i
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> _pi e. RR )
999 icogelb
 |-  ( ( _pi e. RR* /\ T e. RR* /\ ( X mod T ) e. ( _pi [,) T ) ) -> _pi <_ ( X mod T ) )
1000 155 934 999 mp3an12
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> _pi <_ ( X mod T ) )
1001 1000 adantr
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> _pi <_ ( X mod T ) )
1002 neqne
 |-  ( -. ( X mod T ) = _pi -> ( X mod T ) =/= _pi )
1003 1002 adantl
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> ( X mod T ) =/= _pi )
1004 998 997 1001 1003 leneltd
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> _pi < ( X mod T ) )
1005 962 a1i
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> ( X mod T ) < T )
1006 995 996 997 1004 1005 eliood
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> ( X mod T ) e. ( _pi (,) T ) )
1007 eqid
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) = ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 )
1008 ioossre
 |-  ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) C_ RR
1009 1008 a1i
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) C_ RR )
1010 1009 208 sstrdi
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) C_ CC )
1011 neg1cn
 |-  -u 1 e. CC
1012 1011 a1i
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> -u 1 e. CC )
1013 27 a1i
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> X e. CC )
1014 1007 1010 1012 1013 constlimc
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> -u 1 e. ( ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) limCC X ) )
1015 153 a1i
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> 0 e. RR* )
1016 120 a1i
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> _pi e. RR )
1017 936 a1i
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( X mod T ) e. RR* )
1018 ioogtlb
 |-  ( ( _pi e. RR* /\ T e. RR* /\ ( X mod T ) e. ( _pi (,) T ) ) -> _pi < ( X mod T ) )
1019 155 934 1018 mp3an12
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> _pi < ( X mod T ) )
1020 1015 1016 1017 1019 gtnelioc
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> -. ( X mod T ) e. ( 0 (,] _pi ) )
1021 1020 iffalsed
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) = -u 1 )
1022 1008 a1i
 |-  ( T. -> ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) C_ RR )
1023 363 1022 feqresmpt
 |-  ( T. -> ( F |` ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) = ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> ( F ` x ) ) )
1024 1023 mptru
 |-  ( F |` ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) = ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> ( F ` x ) )
1025 elioore
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> x e. RR )
1026 1025 110 147 sylancl
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
1027 1026 adantl
 |-  ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
1028 120 a1i
 |-  ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> _pi e. RR )
1029 135 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> T e. RR+ )
1030 1025 1029 modcld
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x mod T ) e. RR )
1031 1030 adantl
 |-  ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> ( x mod T ) e. RR )
1032 3 120 readdcli
 |-  ( X + _pi ) e. RR
1033 1032 recni
 |-  ( X + _pi ) e. CC
1034 1033 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X + _pi ) e. CC )
1035 27 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> X e. CC )
1036 767 recni
 |-  ( X mod T ) e. CC
1037 1036 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X mod T ) e. CC )
1038 1034 1035 1037 nnncan2d
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( ( X + _pi ) - ( X mod T ) ) - ( X - ( X mod T ) ) ) = ( ( X + _pi ) - X ) )
1039 1038 861 eqtr2di
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> _pi = ( ( ( X + _pi ) - ( X mod T ) ) - ( X - ( X mod T ) ) ) )
1040 1032 767 resubcli
 |-  ( ( X + _pi ) - ( X mod T ) ) e. RR
1041 1040 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X + _pi ) - ( X mod T ) ) e. RR )
1042 768 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( X mod T ) ) e. RR )
1043 1040 rexri
 |-  ( ( X + _pi ) - ( X mod T ) ) e. RR*
1044 1043 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X + _pi ) - ( X mod T ) ) e. RR* )
1045 3 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> X e. RR )
1046 1045 rexrd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> X e. RR* )
1047 id
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) )
1048 ioogtlb
 |-  ( ( ( ( X + _pi ) - ( X mod T ) ) e. RR* /\ X e. RR* /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> ( ( X + _pi ) - ( X mod T ) ) < x )
1049 1044 1046 1047 1048 syl3anc
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X + _pi ) - ( X mod T ) ) < x )
1050 1041 1025 1042 1049 ltsub1dd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( ( X + _pi ) - ( X mod T ) ) - ( X - ( X mod T ) ) ) < ( x - ( X - ( X mod T ) ) ) )
1051 1039 1050 eqbrtrd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> _pi < ( x - ( X - ( X mod T ) ) ) )
1052 1025 recnd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> x e. CC )
1053 sub31
 |-  ( ( x e. CC /\ X e. CC /\ ( X mod T ) e. CC ) -> ( x - ( X - ( X mod T ) ) ) = ( ( X mod T ) - ( X - x ) ) )
1054 1052 1035 1037 1053 syl3anc
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x - ( X - ( X mod T ) ) ) = ( ( X mod T ) - ( X - x ) ) )
1055 1051 1054 breqtrd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> _pi < ( ( X mod T ) - ( X - x ) ) )
1056 1055 adantl
 |-  ( ( _pi < ( X mod T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> _pi < ( ( X mod T ) - ( X - x ) ) )
1057 1045 1025 resubcld
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - x ) e. RR )
1058 0red
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 e. RR )
1059 iooltub
 |-  ( ( ( ( X + _pi ) - ( X mod T ) ) e. RR* /\ X e. RR* /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> x < X )
1060 1044 1046 1047 1059 syl3anc
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> x < X )
1061 1025 1045 posdifd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x < X <-> 0 < ( X - x ) ) )
1062 1060 1061 mpbid
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 < ( X - x ) )
1063 1058 1057 1062 ltled
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 <_ ( X - x ) )
1064 1045 1041 resubcld
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( ( X + _pi ) - ( X mod T ) ) ) e. RR )
1065 122 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> T e. RR )
1066 1041 1025 1045 1049 ltsub2dd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - x ) < ( X - ( ( X + _pi ) - ( X mod T ) ) ) )
1067 sub31
 |-  ( ( X e. CC /\ ( X + _pi ) e. CC /\ ( X mod T ) e. CC ) -> ( X - ( ( X + _pi ) - ( X mod T ) ) ) = ( ( X mod T ) - ( ( X + _pi ) - X ) ) )
1068 27 1033 1036 1067 mp3an
 |-  ( X - ( ( X + _pi ) - ( X mod T ) ) ) = ( ( X mod T ) - ( ( X + _pi ) - X ) )
1069 861 oveq2i
 |-  ( ( X mod T ) - ( ( X + _pi ) - X ) ) = ( ( X mod T ) - _pi )
1070 1068 1069 eqtri
 |-  ( X - ( ( X + _pi ) - ( X mod T ) ) ) = ( ( X mod T ) - _pi )
1071 ltsubrp
 |-  ( ( ( X mod T ) e. RR /\ _pi e. RR+ ) -> ( ( X mod T ) - _pi ) < ( X mod T ) )
1072 767 184 1071 mp2an
 |-  ( ( X mod T ) - _pi ) < ( X mod T )
1073 767 120 resubcli
 |-  ( ( X mod T ) - _pi ) e. RR
1074 1073 767 122 lttri
 |-  ( ( ( ( X mod T ) - _pi ) < ( X mod T ) /\ ( X mod T ) < T ) -> ( ( X mod T ) - _pi ) < T )
1075 1072 962 1074 mp2an
 |-  ( ( X mod T ) - _pi ) < T
1076 1070 1075 eqbrtri
 |-  ( X - ( ( X + _pi ) - ( X mod T ) ) ) < T
1077 1076 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( ( X + _pi ) - ( X mod T ) ) ) < T )
1078 1057 1064 1065 1066 1077 lttrd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - x ) < T )
1079 modid
 |-  ( ( ( ( X - x ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( X - x ) /\ ( X - x ) < T ) ) -> ( ( X - x ) mod T ) = ( X - x ) )
1080 1057 1029 1063 1078 1079 syl22anc
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X - x ) mod T ) = ( X - x ) )
1081 1080 oveq2d
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X mod T ) - ( ( X - x ) mod T ) ) = ( ( X mod T ) - ( X - x ) ) )
1082 1081 oveq1d
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( ( X mod T ) - ( ( X - x ) mod T ) ) mod T ) = ( ( ( X mod T ) - ( X - x ) ) mod T ) )
1083 767 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X mod T ) e. RR )
1084 1083 1057 resubcld
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X mod T ) - ( X - x ) ) e. RR )
1085 120 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> _pi e. RR )
1086 1054 1084 eqeltrd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x - ( X - ( X mod T ) ) ) e. RR )
1087 72 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 < _pi )
1088 1058 1085 1086 1087 1051 lttrd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 < ( x - ( X - ( X mod T ) ) ) )
1089 1088 1054 breqtrd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 < ( ( X mod T ) - ( X - x ) ) )
1090 1058 1084 1089 ltled
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> 0 <_ ( ( X mod T ) - ( X - x ) ) )
1091 1045 1042 resubcld
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( X - ( X mod T ) ) ) e. RR )
1092 1025 1045 1042 1060 ltsub1dd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x - ( X - ( X mod T ) ) ) < ( X - ( X - ( X mod T ) ) ) )
1093 nncan
 |-  ( ( X e. CC /\ ( X mod T ) e. CC ) -> ( X - ( X - ( X mod T ) ) ) = ( X mod T ) )
1094 27 1036 1093 mp2an
 |-  ( X - ( X - ( X mod T ) ) ) = ( X mod T )
1095 1094 962 eqbrtri
 |-  ( X - ( X - ( X mod T ) ) ) < T
1096 1095 a1i
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( X - ( X mod T ) ) ) < T )
1097 1086 1091 1065 1092 1096 lttrd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( x - ( X - ( X mod T ) ) ) < T )
1098 1054 1097 eqbrtrrd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X mod T ) - ( X - x ) ) < T )
1099 modid
 |-  ( ( ( ( ( X mod T ) - ( X - x ) ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( ( X mod T ) - ( X - x ) ) /\ ( ( X mod T ) - ( X - x ) ) < T ) ) -> ( ( ( X mod T ) - ( X - x ) ) mod T ) = ( ( X mod T ) - ( X - x ) ) )
1100 1084 1029 1090 1098 1099 syl22anc
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( ( X mod T ) - ( X - x ) ) mod T ) = ( ( X mod T ) - ( X - x ) ) )
1101 1082 1100 eqtr2d
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X mod T ) - ( X - x ) ) = ( ( ( X mod T ) - ( ( X - x ) mod T ) ) mod T ) )
1102 modsubmodmod
 |-  ( ( X e. RR /\ ( X - x ) e. RR /\ T e. RR+ ) -> ( ( ( X mod T ) - ( ( X - x ) mod T ) ) mod T ) = ( ( X - ( X - x ) ) mod T ) )
1103 1045 1057 1029 1102 syl3anc
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( ( X mod T ) - ( ( X - x ) mod T ) ) mod T ) = ( ( X - ( X - x ) ) mod T ) )
1104 1035 1052 nncand
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( X - ( X - x ) ) = x )
1105 1104 oveq1d
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X - ( X - x ) ) mod T ) = ( x mod T ) )
1106 1101 1103 1105 3eqtrd
 |-  ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) -> ( ( X mod T ) - ( X - x ) ) = ( x mod T ) )
1107 1106 adantl
 |-  ( ( _pi < ( X mod T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> ( ( X mod T ) - ( X - x ) ) = ( x mod T ) )
1108 1056 1107 breqtrd
 |-  ( ( _pi < ( X mod T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> _pi < ( x mod T ) )
1109 1019 1108 sylan
 |-  ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> _pi < ( x mod T ) )
1110 1028 1031 1109 ltled
 |-  ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> _pi <_ ( x mod T ) )
1111 1028 1031 1110 lensymd
 |-  ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> -. ( x mod T ) < _pi )
1112 1111 iffalsed
 |-  ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = -u 1 )
1113 1027 1112 eqtrd
 |-  ( ( ( X mod T ) e. ( _pi (,) T ) /\ x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) -> ( F ` x ) = -u 1 )
1114 1113 mpteq2dva
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> ( F ` x ) ) = ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) )
1115 1024 1114 eqtr2id
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) = ( F |` ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) )
1116 1115 oveq1d
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) limCC X ) = ( ( F |` ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) limCC X ) )
1117 210 a1i
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> F : RR --> CC )
1118 1043 a1i
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( ( X + _pi ) - ( X mod T ) ) e. RR* )
1119 3 a1i
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> X e. RR )
1120 elioore
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( X mod T ) e. RR )
1121 ltaddsublt
 |-  ( ( X e. RR /\ _pi e. RR /\ ( X mod T ) e. RR ) -> ( _pi < ( X mod T ) <-> ( ( X + _pi ) - ( X mod T ) ) < X ) )
1122 1119 1016 1120 1121 syl3anc
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( _pi < ( X mod T ) <-> ( ( X + _pi ) - ( X mod T ) ) < X ) )
1123 1019 1122 mpbid
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( ( X + _pi ) - ( X mod T ) ) < X )
1124 365 a1i
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> -oo e. RR* )
1125 mnflt
 |-  ( ( ( X + _pi ) - ( X mod T ) ) e. RR -> -oo < ( ( X + _pi ) - ( X mod T ) ) )
1126 xrltle
 |-  ( ( -oo e. RR* /\ ( ( X + _pi ) - ( X mod T ) ) e. RR* ) -> ( -oo < ( ( X + _pi ) - ( X mod T ) ) -> -oo <_ ( ( X + _pi ) - ( X mod T ) ) ) )
1127 365 1043 1126 mp2an
 |-  ( -oo < ( ( X + _pi ) - ( X mod T ) ) -> -oo <_ ( ( X + _pi ) - ( X mod T ) ) )
1128 1040 1125 1127 mp2b
 |-  -oo <_ ( ( X + _pi ) - ( X mod T ) )
1129 1128 a1i
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> -oo <_ ( ( X + _pi ) - ( X mod T ) ) )
1130 1117 1118 1119 1123 1009 1124 1129 limcresiooub
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( ( F |` ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) ) limCC X ) = ( ( F |` ( -oo (,) X ) ) limCC X ) )
1131 1116 1130 eqtr2d
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> ( ( F |` ( -oo (,) X ) ) limCC X ) = ( ( x e. ( ( ( X + _pi ) - ( X mod T ) ) (,) X ) |-> -u 1 ) limCC X ) )
1132 1014 1021 1131 3eltr4d
 |-  ( ( X mod T ) e. ( _pi (,) T ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) )
1133 1006 1132 syl
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ -. ( X mod T ) = _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) )
1134 994 1133 pm2.61dan
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) )
1135 964 1134 syl
 |-  ( ( -. ( X mod T ) e. ( 0 (,) _pi ) /\ -. ( X mod T ) = 0 ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) )
1136 932 1135 pm2.61dan
 |-  ( -. ( X mod T ) e. ( 0 (,) _pi ) -> if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) )
1137 814 1136 pm2.61i
 |-  if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. ( ( F |` ( -oo (,) X ) ) limCC X )
1138 eqid
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) = ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 )
1139 ioossre
 |-  ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) C_ RR
1140 1139 a1i
 |-  ( T. -> ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) C_ RR )
1141 1140 208 sstrdi
 |-  ( T. -> ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) C_ CC )
1142 1138 1141 204 819 constlimc
 |-  ( T. -> 1 e. ( ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) limCC X ) )
1143 1142 mptru
 |-  1 e. ( ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) limCC X )
1144 1143 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> 1 e. ( ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) limCC X ) )
1145 2 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> F = ( x e. RR |-> if ( ( x mod T ) < _pi , 1 , -u 1 ) ) )
1146 oveq1
 |-  ( x = X -> ( x mod T ) = ( X mod T ) )
1147 1146 breq1d
 |-  ( x = X -> ( ( x mod T ) < _pi <-> ( X mod T ) < _pi ) )
1148 1147 ifbid
 |-  ( x = X -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) )
1149 1148 adantl
 |-  ( ( ( X mod T ) e. ( 0 [,) _pi ) /\ x = X ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) )
1150 3 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> X e. RR )
1151 108 109 ifcli
 |-  if ( ( X mod T ) < _pi , 1 , -u 1 ) e. RR
1152 1151 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> if ( ( X mod T ) < _pi , 1 , -u 1 ) e. RR )
1153 1145 1149 1150 1152 fvmptd
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( F ` X ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) )
1154 icoltub
 |-  ( ( 0 e. RR* /\ _pi e. RR* /\ ( X mod T ) e. ( 0 [,) _pi ) ) -> ( X mod T ) < _pi )
1155 153 155 1154 mp3an12
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( X mod T ) < _pi )
1156 1155 iftrued
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> if ( ( X mod T ) < _pi , 1 , -u 1 ) = 1 )
1157 1153 1156 eqtrd
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( F ` X ) = 1 )
1158 363 1140 feqresmpt
 |-  ( T. -> ( F |` ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) = ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> ( F ` x ) ) )
1159 1158 mptru
 |-  ( F |` ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) = ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> ( F ` x ) )
1160 elioore
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> x e. RR )
1161 1160 110 147 sylancl
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
1162 1161 adantl
 |-  ( ( ( X mod T ) e. ( 0 [,) _pi ) /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
1163 3 a1i
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> X e. RR )
1164 1160 1163 resubcld
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( x - X ) e. RR )
1165 135 a1i
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> T e. RR+ )
1166 0red
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 e. RR )
1167 1163 rexrd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> X e. RR* )
1168 120 767 resubcli
 |-  ( _pi - ( X mod T ) ) e. RR
1169 3 1168 readdcli
 |-  ( X + ( _pi - ( X mod T ) ) ) e. RR
1170 1169 rexri
 |-  ( X + ( _pi - ( X mod T ) ) ) e. RR*
1171 1170 a1i
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X + ( _pi - ( X mod T ) ) ) e. RR* )
1172 id
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) )
1173 ioogtlb
 |-  ( ( X e. RR* /\ ( X + ( _pi - ( X mod T ) ) ) e. RR* /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> X < x )
1174 1167 1171 1172 1173 syl3anc
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> X < x )
1175 1163 1160 posdifd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X < x <-> 0 < ( x - X ) ) )
1176 1174 1175 mpbid
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 < ( x - X ) )
1177 1166 1164 1176 ltled
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 <_ ( x - X ) )
1178 120 a1i
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> _pi e. RR )
1179 122 a1i
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> T e. RR )
1180 1169 a1i
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X + ( _pi - ( X mod T ) ) ) e. RR )
1181 1180 1163 resubcld
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X + ( _pi - ( X mod T ) ) ) - X ) e. RR )
1182 iooltub
 |-  ( ( X e. RR* /\ ( X + ( _pi - ( X mod T ) ) ) e. RR* /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> x < ( X + ( _pi - ( X mod T ) ) ) )
1183 1167 1171 1172 1182 syl3anc
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> x < ( X + ( _pi - ( X mod T ) ) ) )
1184 1160 1180 1163 1183 ltsub1dd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( x - X ) < ( ( X + ( _pi - ( X mod T ) ) ) - X ) )
1185 1168 recni
 |-  ( _pi - ( X mod T ) ) e. CC
1186 pncan2
 |-  ( ( X e. CC /\ ( _pi - ( X mod T ) ) e. CC ) -> ( ( X + ( _pi - ( X mod T ) ) ) - X ) = ( _pi - ( X mod T ) ) )
1187 27 1185 1186 mp2an
 |-  ( ( X + ( _pi - ( X mod T ) ) ) - X ) = ( _pi - ( X mod T ) )
1188 subge02
 |-  ( ( _pi e. RR /\ ( X mod T ) e. RR ) -> ( 0 <_ ( X mod T ) <-> ( _pi - ( X mod T ) ) <_ _pi ) )
1189 120 767 1188 mp2an
 |-  ( 0 <_ ( X mod T ) <-> ( _pi - ( X mod T ) ) <_ _pi )
1190 950 1189 mpbi
 |-  ( _pi - ( X mod T ) ) <_ _pi
1191 1187 1190 eqbrtri
 |-  ( ( X + ( _pi - ( X mod T ) ) ) - X ) <_ _pi
1192 1191 a1i
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X + ( _pi - ( X mod T ) ) ) - X ) <_ _pi )
1193 1164 1181 1178 1184 1192 ltletrd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( x - X ) < _pi )
1194 187 a1i
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> _pi < T )
1195 1164 1178 1179 1193 1194 lttrd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( x - X ) < T )
1196 modid
 |-  ( ( ( ( x - X ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( x - X ) /\ ( x - X ) < T ) ) -> ( ( x - X ) mod T ) = ( x - X ) )
1197 1164 1165 1177 1195 1196 syl22anc
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( x - X ) mod T ) = ( x - X ) )
1198 1197 oveq2d
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( ( x - X ) mod T ) ) = ( ( X mod T ) + ( x - X ) ) )
1199 1198 oveq1d
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) = ( ( ( X mod T ) + ( x - X ) ) mod T ) )
1200 767 a1i
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X mod T ) e. RR )
1201 1200 1164 readdcld
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) e. RR )
1202 1163 1163 resubcld
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X - X ) e. RR )
1203 1200 1202 readdcld
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( X - X ) ) e. RR )
1204 27 subidi
 |-  ( X - X ) = 0
1205 1204 oveq2i
 |-  ( ( X mod T ) + ( X - X ) ) = ( ( X mod T ) + 0 )
1206 1036 addid1i
 |-  ( ( X mod T ) + 0 ) = ( X mod T )
1207 1205 1206 eqtr2i
 |-  ( X mod T ) = ( ( X mod T ) + ( X - X ) )
1208 950 1207 breqtri
 |-  0 <_ ( ( X mod T ) + ( X - X ) )
1209 1208 a1i
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 <_ ( ( X mod T ) + ( X - X ) ) )
1210 1163 1160 1163 1174 ltsub1dd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X - X ) < ( x - X ) )
1211 1202 1164 1200 1210 ltadd2dd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( X - X ) ) < ( ( X mod T ) + ( x - X ) ) )
1212 1166 1203 1201 1209 1211 lelttrd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 < ( ( X mod T ) + ( x - X ) ) )
1213 1166 1201 1212 ltled
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> 0 <_ ( ( X mod T ) + ( x - X ) ) )
1214 1164 1181 1200 1184 ltadd2dd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < ( ( X mod T ) + ( ( X + ( _pi - ( X mod T ) ) ) - X ) ) )
1215 1187 oveq2i
 |-  ( ( X mod T ) + ( ( X + ( _pi - ( X mod T ) ) ) - X ) ) = ( ( X mod T ) + ( _pi - ( X mod T ) ) )
1216 1036 56 pncan3i
 |-  ( ( X mod T ) + ( _pi - ( X mod T ) ) ) = _pi
1217 1215 1216 eqtri
 |-  ( ( X mod T ) + ( ( X + ( _pi - ( X mod T ) ) ) - X ) ) = _pi
1218 1214 1217 breqtrdi
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < _pi )
1219 1201 1178 1179 1218 1194 lttrd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < T )
1220 modid
 |-  ( ( ( ( ( X mod T ) + ( x - X ) ) e. RR /\ T e. RR+ ) /\ ( 0 <_ ( ( X mod T ) + ( x - X ) ) /\ ( ( X mod T ) + ( x - X ) ) < T ) ) -> ( ( ( X mod T ) + ( x - X ) ) mod T ) = ( ( X mod T ) + ( x - X ) ) )
1221 1201 1165 1213 1219 1220 syl22anc
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( x - X ) ) mod T ) = ( ( X mod T ) + ( x - X ) ) )
1222 1199 1221 eqtr2d
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) = ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) )
1223 modaddabs
 |-  ( ( X e. RR /\ ( x - X ) e. RR /\ T e. RR+ ) -> ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) = ( ( X + ( x - X ) ) mod T ) )
1224 1163 1164 1165 1223 syl3anc
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) = ( ( X + ( x - X ) ) mod T ) )
1225 27 a1i
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> X e. CC )
1226 1160 recnd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> x e. CC )
1227 1225 1226 pncan3d
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( X + ( x - X ) ) = x )
1228 1227 oveq1d
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( ( X + ( x - X ) ) mod T ) = ( x mod T ) )
1229 1222 1224 1228 3eqtrrd
 |-  ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) -> ( x mod T ) = ( ( X mod T ) + ( x - X ) ) )
1230 1229 adantl
 |-  ( ( ( X mod T ) < _pi /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( x mod T ) = ( ( X mod T ) + ( x - X ) ) )
1231 1218 adantl
 |-  ( ( ( X mod T ) < _pi /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < _pi )
1232 1230 1231 eqbrtrd
 |-  ( ( ( X mod T ) < _pi /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( x mod T ) < _pi )
1233 1155 1232 sylan
 |-  ( ( ( X mod T ) e. ( 0 [,) _pi ) /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( x mod T ) < _pi )
1234 1233 iftrued
 |-  ( ( ( X mod T ) e. ( 0 [,) _pi ) /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = 1 )
1235 1162 1234 eqtrd
 |-  ( ( ( X mod T ) e. ( 0 [,) _pi ) /\ x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) -> ( F ` x ) = 1 )
1236 1235 mpteq2dva
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> ( F ` x ) ) = ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) )
1237 1159 1236 eqtr2id
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) = ( F |` ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) )
1238 1237 oveq1d
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) limCC X ) = ( ( F |` ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) limCC X ) )
1239 210 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> F : RR --> CC )
1240 1170 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( X + ( _pi - ( X mod T ) ) ) e. RR* )
1241 1168 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( _pi - ( X mod T ) ) e. RR )
1242 767 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( X mod T ) e. RR )
1243 120 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> _pi e. RR )
1244 1242 1243 posdifd
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( ( X mod T ) < _pi <-> 0 < ( _pi - ( X mod T ) ) ) )
1245 1155 1244 mpbid
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> 0 < ( _pi - ( X mod T ) ) )
1246 1241 1245 elrpd
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( _pi - ( X mod T ) ) e. RR+ )
1247 1150 1246 ltaddrpd
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> X < ( X + ( _pi - ( X mod T ) ) ) )
1248 1139 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) C_ RR )
1249 376 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> +oo e. RR* )
1250 ltpnf
 |-  ( ( X + ( _pi - ( X mod T ) ) ) e. RR -> ( X + ( _pi - ( X mod T ) ) ) < +oo )
1251 xrltle
 |-  ( ( ( X + ( _pi - ( X mod T ) ) ) e. RR* /\ +oo e. RR* ) -> ( ( X + ( _pi - ( X mod T ) ) ) < +oo -> ( X + ( _pi - ( X mod T ) ) ) <_ +oo ) )
1252 1170 376 1251 mp2an
 |-  ( ( X + ( _pi - ( X mod T ) ) ) < +oo -> ( X + ( _pi - ( X mod T ) ) ) <_ +oo )
1253 1169 1250 1252 mp2b
 |-  ( X + ( _pi - ( X mod T ) ) ) <_ +oo
1254 1253 a1i
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( X + ( _pi - ( X mod T ) ) ) <_ +oo )
1255 1239 1150 1240 1247 1248 1249 1254 limcresioolb
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( ( F |` ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) ) limCC X ) = ( ( F |` ( X (,) +oo ) ) limCC X ) )
1256 1238 1255 eqtr2d
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) = ( ( x e. ( X (,) ( X + ( _pi - ( X mod T ) ) ) ) |-> 1 ) limCC X ) )
1257 1144 1157 1256 3eltr4d
 |-  ( ( X mod T ) e. ( 0 [,) _pi ) -> ( F ` X ) e. ( ( F |` ( X (,) +oo ) ) limCC X ) )
1258 155 a1i
 |-  ( -. ( X mod T ) e. ( 0 [,) _pi ) -> _pi e. RR* )
1259 934 a1i
 |-  ( -. ( X mod T ) e. ( 0 [,) _pi ) -> T e. RR* )
1260 936 a1i
 |-  ( -. ( X mod T ) e. ( 0 [,) _pi ) -> ( X mod T ) e. RR* )
1261 153 a1i
 |-  ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> 0 e. RR* )
1262 155 a1i
 |-  ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> _pi e. RR* )
1263 936 a1i
 |-  ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> ( X mod T ) e. RR* )
1264 950 a1i
 |-  ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> 0 <_ ( X mod T ) )
1265 767 a1i
 |-  ( -. _pi <_ ( X mod T ) -> ( X mod T ) e. RR )
1266 120 a1i
 |-  ( -. _pi <_ ( X mod T ) -> _pi e. RR )
1267 1265 1266 ltnled
 |-  ( -. _pi <_ ( X mod T ) -> ( ( X mod T ) < _pi <-> -. _pi <_ ( X mod T ) ) )
1268 1267 ibir
 |-  ( -. _pi <_ ( X mod T ) -> ( X mod T ) < _pi )
1269 1268 adantl
 |-  ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> ( X mod T ) < _pi )
1270 1261 1262 1263 1264 1269 elicod
 |-  ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> ( X mod T ) e. ( 0 [,) _pi ) )
1271 simpl
 |-  ( ( -. ( X mod T ) e. ( 0 [,) _pi ) /\ -. _pi <_ ( X mod T ) ) -> -. ( X mod T ) e. ( 0 [,) _pi ) )
1272 1270 1271 condan
 |-  ( -. ( X mod T ) e. ( 0 [,) _pi ) -> _pi <_ ( X mod T ) )
1273 962 a1i
 |-  ( -. ( X mod T ) e. ( 0 [,) _pi ) -> ( X mod T ) < T )
1274 1258 1259 1260 1272 1273 elicod
 |-  ( -. ( X mod T ) e. ( 0 [,) _pi ) -> ( X mod T ) e. ( _pi [,) T ) )
1275 eqid
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) = ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 )
1276 ioossre
 |-  ( X (,) ( X + ( T - ( X mod T ) ) ) ) C_ RR
1277 1276 a1i
 |-  ( T. -> ( X (,) ( X + ( T - ( X mod T ) ) ) ) C_ RR )
1278 1277 208 sstrdi
 |-  ( T. -> ( X (,) ( X + ( T - ( X mod T ) ) ) ) C_ CC )
1279 1275 1278 306 819 constlimc
 |-  ( T. -> -u 1 e. ( ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) limCC X ) )
1280 1279 mptru
 |-  -u 1 e. ( ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) limCC X )
1281 1280 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> -u 1 e. ( ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) limCC X ) )
1282 1ex
 |-  1 e. _V
1283 109 elexi
 |-  -u 1 e. _V
1284 1282 1283 ifex
 |-  if ( ( X mod T ) < _pi , 1 , -u 1 ) e. _V
1285 1148 2 1284 fvmpt
 |-  ( X e. RR -> ( F ` X ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) )
1286 3 1285 ax-mp
 |-  ( F ` X ) = if ( ( X mod T ) < _pi , 1 , -u 1 )
1287 1286 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( F ` X ) = if ( ( X mod T ) < _pi , 1 , -u 1 ) )
1288 120 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> _pi e. RR )
1289 767 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( X mod T ) e. RR )
1290 1288 1289 1000 lensymd
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> -. ( X mod T ) < _pi )
1291 1290 iffalsed
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> if ( ( X mod T ) < _pi , 1 , -u 1 ) = -u 1 )
1292 1287 1291 eqtrd
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( F ` X ) = -u 1 )
1293 363 1277 feqresmpt
 |-  ( T. -> ( F |` ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) = ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> ( F ` x ) ) )
1294 1293 mptru
 |-  ( F |` ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) = ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> ( F ` x ) )
1295 elioore
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> x e. RR )
1296 1295 110 147 sylancl
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
1297 1296 adantl
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( F ` x ) = if ( ( x mod T ) < _pi , 1 , -u 1 ) )
1298 120 a1i
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> _pi e. RR )
1299 3 a1i
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> X e. RR )
1300 1295 1299 resubcld
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( x - X ) e. RR )
1301 135 a1i
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> T e. RR+ )
1302 0red
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 e. RR )
1303 1299 rexrd
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> X e. RR* )
1304 122 767 resubcli
 |-  ( T - ( X mod T ) ) e. RR
1305 3 1304 readdcli
 |-  ( X + ( T - ( X mod T ) ) ) e. RR
1306 1305 rexri
 |-  ( X + ( T - ( X mod T ) ) ) e. RR*
1307 1306 a1i
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X + ( T - ( X mod T ) ) ) e. RR* )
1308 id
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) )
1309 ioogtlb
 |-  ( ( X e. RR* /\ ( X + ( T - ( X mod T ) ) ) e. RR* /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> X < x )
1310 1303 1307 1308 1309 syl3anc
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> X < x )
1311 1299 1295 posdifd
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X < x <-> 0 < ( x - X ) ) )
1312 1310 1311 mpbid
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 < ( x - X ) )
1313 1302 1300 1312 ltled
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 <_ ( x - X ) )
1314 1305 a1i
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X + ( T - ( X mod T ) ) ) e. RR )
1315 1314 1299 resubcld
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X + ( T - ( X mod T ) ) ) - X ) e. RR )
1316 122 a1i
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> T e. RR )
1317 iooltub
 |-  ( ( X e. RR* /\ ( X + ( T - ( X mod T ) ) ) e. RR* /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> x < ( X + ( T - ( X mod T ) ) ) )
1318 1303 1307 1308 1317 syl3anc
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> x < ( X + ( T - ( X mod T ) ) ) )
1319 1295 1314 1299 1318 ltsub1dd
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( x - X ) < ( ( X + ( T - ( X mod T ) ) ) - X ) )
1320 1304 recni
 |-  ( T - ( X mod T ) ) e. CC
1321 pncan2
 |-  ( ( X e. CC /\ ( T - ( X mod T ) ) e. CC ) -> ( ( X + ( T - ( X mod T ) ) ) - X ) = ( T - ( X mod T ) ) )
1322 27 1320 1321 mp2an
 |-  ( ( X + ( T - ( X mod T ) ) ) - X ) = ( T - ( X mod T ) )
1323 subge02
 |-  ( ( T e. RR /\ ( X mod T ) e. RR ) -> ( 0 <_ ( X mod T ) <-> ( T - ( X mod T ) ) <_ T ) )
1324 122 767 1323 mp2an
 |-  ( 0 <_ ( X mod T ) <-> ( T - ( X mod T ) ) <_ T )
1325 950 1324 mpbi
 |-  ( T - ( X mod T ) ) <_ T
1326 1322 1325 eqbrtri
 |-  ( ( X + ( T - ( X mod T ) ) ) - X ) <_ T
1327 1326 a1i
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X + ( T - ( X mod T ) ) ) - X ) <_ T )
1328 1300 1315 1316 1319 1327 ltletrd
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( x - X ) < T )
1329 1300 1301 1313 1328 1196 syl22anc
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( x - X ) mod T ) = ( x - X ) )
1330 1329 oveq2d
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( ( x - X ) mod T ) ) = ( ( X mod T ) + ( x - X ) ) )
1331 1330 oveq1d
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) = ( ( ( X mod T ) + ( x - X ) ) mod T ) )
1332 readdcl
 |-  ( ( ( X mod T ) e. RR /\ ( x - X ) e. RR ) -> ( ( X mod T ) + ( x - X ) ) e. RR )
1333 767 1300 1332 sylancr
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) e. RR )
1334 767 a1i
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X mod T ) e. RR )
1335 950 a1i
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 <_ ( X mod T ) )
1336 1334 1300 1335 1312 addgegt0d
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 < ( ( X mod T ) + ( x - X ) ) )
1337 1302 1333 1336 ltled
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> 0 <_ ( ( X mod T ) + ( x - X ) ) )
1338 1300 1315 1334 1319 ltadd2dd
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < ( ( X mod T ) + ( ( X + ( T - ( X mod T ) ) ) - X ) ) )
1339 1322 oveq2i
 |-  ( ( X mod T ) + ( ( X + ( T - ( X mod T ) ) ) - X ) ) = ( ( X mod T ) + ( T - ( X mod T ) ) )
1340 1036 123 pncan3i
 |-  ( ( X mod T ) + ( T - ( X mod T ) ) ) = T
1341 1339 1340 eqtri
 |-  ( ( X mod T ) + ( ( X + ( T - ( X mod T ) ) ) - X ) ) = T
1342 1338 1341 breqtrdi
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) < T )
1343 1333 1301 1337 1342 1220 syl22anc
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( x - X ) ) mod T ) = ( ( X mod T ) + ( x - X ) ) )
1344 1331 1343 eqtr2d
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) = ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) )
1345 1299 1300 1301 1223 syl3anc
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( ( X mod T ) + ( ( x - X ) mod T ) ) mod T ) = ( ( X + ( x - X ) ) mod T ) )
1346 27 a1i
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> X e. CC )
1347 1295 recnd
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> x e. CC )
1348 1346 1347 pncan3d
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X + ( x - X ) ) = x )
1349 1348 oveq1d
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X + ( x - X ) ) mod T ) = ( x mod T ) )
1350 1344 1345 1349 3eqtrd
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) = ( x mod T ) )
1351 1350 adantl
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) = ( x mod T ) )
1352 1333 adantl
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( ( X mod T ) + ( x - X ) ) e. RR )
1353 1351 1352 eqeltrrd
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( x mod T ) e. RR )
1354 767 a1i
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( X mod T ) e. RR )
1355 1000 adantr
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> _pi <_ ( X mod T ) )
1356 1300 1312 elrpd
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( x - X ) e. RR+ )
1357 1334 1356 ltaddrpd
 |-  ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) -> ( X mod T ) < ( ( X mod T ) + ( x - X ) ) )
1358 1357 adantl
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( X mod T ) < ( ( X mod T ) + ( x - X ) ) )
1359 1298 1354 1352 1355 1358 lelttrd
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> _pi < ( ( X mod T ) + ( x - X ) ) )
1360 1298 1352 1359 ltled
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> _pi <_ ( ( X mod T ) + ( x - X ) ) )
1361 1360 1351 breqtrd
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> _pi <_ ( x mod T ) )
1362 1298 1353 1361 lensymd
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> -. ( x mod T ) < _pi )
1363 1362 iffalsed
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> if ( ( x mod T ) < _pi , 1 , -u 1 ) = -u 1 )
1364 1297 1363 eqtrd
 |-  ( ( ( X mod T ) e. ( _pi [,) T ) /\ x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) -> ( F ` x ) = -u 1 )
1365 1364 mpteq2dva
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> ( F ` x ) ) = ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) )
1366 1294 1365 eqtr2id
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) = ( F |` ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) )
1367 1366 oveq1d
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) limCC X ) = ( ( F |` ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) limCC X ) )
1368 210 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> F : RR --> CC )
1369 3 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> X e. RR )
1370 1306 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( X + ( T - ( X mod T ) ) ) e. RR* )
1371 1304 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( T - ( X mod T ) ) e. RR )
1372 962 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( X mod T ) < T )
1373 122 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> T e. RR )
1374 1289 1373 posdifd
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( ( X mod T ) < T <-> 0 < ( T - ( X mod T ) ) ) )
1375 1372 1374 mpbid
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> 0 < ( T - ( X mod T ) ) )
1376 1371 1375 elrpd
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( T - ( X mod T ) ) e. RR+ )
1377 1369 1376 ltaddrpd
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> X < ( X + ( T - ( X mod T ) ) ) )
1378 1276 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( X (,) ( X + ( T - ( X mod T ) ) ) ) C_ RR )
1379 376 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> +oo e. RR* )
1380 ltpnf
 |-  ( ( X + ( T - ( X mod T ) ) ) e. RR -> ( X + ( T - ( X mod T ) ) ) < +oo )
1381 xrltle
 |-  ( ( ( X + ( T - ( X mod T ) ) ) e. RR* /\ +oo e. RR* ) -> ( ( X + ( T - ( X mod T ) ) ) < +oo -> ( X + ( T - ( X mod T ) ) ) <_ +oo ) )
1382 1306 376 1381 mp2an
 |-  ( ( X + ( T - ( X mod T ) ) ) < +oo -> ( X + ( T - ( X mod T ) ) ) <_ +oo )
1383 1305 1380 1382 mp2b
 |-  ( X + ( T - ( X mod T ) ) ) <_ +oo
1384 1383 a1i
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( X + ( T - ( X mod T ) ) ) <_ +oo )
1385 1368 1369 1370 1377 1378 1379 1384 limcresioolb
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( ( F |` ( X (,) ( X + ( T - ( X mod T ) ) ) ) ) limCC X ) = ( ( F |` ( X (,) +oo ) ) limCC X ) )
1386 1367 1385 eqtr2d
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) = ( ( x e. ( X (,) ( X + ( T - ( X mod T ) ) ) ) |-> -u 1 ) limCC X ) )
1387 1281 1292 1386 3eltr4d
 |-  ( ( X mod T ) e. ( _pi [,) T ) -> ( F ` X ) e. ( ( F |` ( X (,) +oo ) ) limCC X ) )
1388 1274 1387 syl
 |-  ( -. ( X mod T ) e. ( 0 [,) _pi ) -> ( F ` X ) e. ( ( F |` ( X (,) +oo ) ) limCC X ) )
1389 1257 1388 pm2.61i
 |-  ( F ` X ) e. ( ( F |` ( X (,) +oo ) ) limCC X )
1390 id
 |-  ( n e. NN0 -> n e. NN0 )
1391 1 2 1390 sqwvfoura
 |-  ( n e. NN0 -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) = 0 )
1392 1391 eqcomd
 |-  ( n e. NN0 -> 0 = ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) )
1393 1392 mpteq2ia
 |-  ( n e. NN0 |-> 0 ) = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) )
1394 id
 |-  ( n e. NN -> n e. NN )
1395 1 2 1394 sqwvfourb
 |-  ( n e. NN -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) = if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) )
1396 1395 eqcomd
 |-  ( n e. NN -> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) = ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) )
1397 1396 mpteq2ia
 |-  ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) )
1398 nnnn0
 |-  ( n e. NN -> n e. NN0 )
1399 0red
 |-  ( n e. NN -> 0 e. RR )
1400 eqid
 |-  ( n e. NN0 |-> 0 ) = ( n e. NN0 |-> 0 )
1401 1400 fvmpt2
 |-  ( ( n e. NN0 /\ 0 e. RR ) -> ( ( n e. NN0 |-> 0 ) ` n ) = 0 )
1402 1398 1399 1401 syl2anc
 |-  ( n e. NN -> ( ( n e. NN0 |-> 0 ) ` n ) = 0 )
1403 1402 oveq1d
 |-  ( n e. NN -> ( ( ( n e. NN0 |-> 0 ) ` n ) x. ( cos ` ( n x. X ) ) ) = ( 0 x. ( cos ` ( n x. X ) ) ) )
1404 78 coscld
 |-  ( n e. NN -> ( cos ` ( n x. X ) ) e. CC )
1405 1404 mul02d
 |-  ( n e. NN -> ( 0 x. ( cos ` ( n x. X ) ) ) = 0 )
1406 1403 1405 eqtrd
 |-  ( n e. NN -> ( ( ( n e. NN0 |-> 0 ) ` n ) x. ( cos ` ( n x. X ) ) ) = 0 )
1407 ovex
 |-  ( 4 / ( n x. _pi ) ) e. _V
1408 93 1407 ifex
 |-  if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) e. _V
1409 eqid
 |-  ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) = ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) )
1410 1409 fvmpt2
 |-  ( ( n e. NN /\ if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) e. _V ) -> ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) = if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) )
1411 1408 1410 mpan2
 |-  ( n e. NN -> ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) = if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) )
1412 1411 oveq1d
 |-  ( n e. NN -> ( ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) x. ( sin ` ( n x. X ) ) ) = ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) )
1413 1406 1412 oveq12d
 |-  ( n e. NN -> ( ( ( ( n e. NN0 |-> 0 ) ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( 0 + ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) ) )
1414 64 76 ifcld
 |-  ( n e. NN -> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) e. CC )
1415 1414 79 mulcld
 |-  ( n e. NN -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) e. CC )
1416 1415 addid2d
 |-  ( n e. NN -> ( 0 + ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) ) = ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) )
1417 iftrue
 |-  ( 2 || n -> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) = 0 )
1418 1417 oveq1d
 |-  ( 2 || n -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = ( 0 x. ( sin ` ( n x. X ) ) ) )
1419 79 mul02d
 |-  ( n e. NN -> ( 0 x. ( sin ` ( n x. X ) ) ) = 0 )
1420 1418 1419 sylan9eqr
 |-  ( ( n e. NN /\ 2 || n ) -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = 0 )
1421 iftrue
 |-  ( 2 || n -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = 0 )
1422 1421 eqcomd
 |-  ( 2 || n -> 0 = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) )
1423 1422 adantl
 |-  ( ( n e. NN /\ 2 || n ) -> 0 = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) )
1424 1420 1423 eqtrd
 |-  ( ( n e. NN /\ 2 || n ) -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) )
1425 iffalse
 |-  ( -. 2 || n -> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) = ( 4 / ( n x. _pi ) ) )
1426 1425 oveq1d
 |-  ( -. 2 || n -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) )
1427 1426 adantl
 |-  ( ( n e. NN /\ -. 2 || n ) -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) )
1428 iffalse
 |-  ( -. 2 || n -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) )
1429 1428 eqcomd
 |-  ( -. 2 || n -> ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) )
1430 1429 adantl
 |-  ( ( n e. NN /\ -. 2 || n ) -> ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) )
1431 1427 1430 eqtrd
 |-  ( ( n e. NN /\ -. 2 || n ) -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) )
1432 1424 1431 pm2.61dan
 |-  ( n e. NN -> ( if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) x. ( sin ` ( n x. X ) ) ) = if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) )
1433 1413 1416 1432 3eqtrrd
 |-  ( n e. NN -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( ( n e. NN0 |-> 0 ) ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) x. ( sin ` ( n x. X ) ) ) ) )
1434 1433 mpteq2ia
 |-  ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) = ( n e. NN |-> ( ( ( ( n e. NN0 |-> 0 ) ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( ( n e. NN |-> if ( 2 || n , 0 , ( 4 / ( n x. _pi ) ) ) ) ` n ) x. ( sin ` ( n x. X ) ) ) ) )
1435 112 1 149 150 331 605 676 755 3 1137 1389 1393 1397 1434 fourierclim
 |-  seq 1 ( + , ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ) ~~> ( ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) - ( ( ( n e. NN0 |-> 0 ) ` 0 ) / 2 ) )
1436 0nn0
 |-  0 e. NN0
1437 eqidd
 |-  ( n = 0 -> 0 = 0 )
1438 1437 1400 93 fvmpt
 |-  ( 0 e. NN0 -> ( ( n e. NN0 |-> 0 ) ` 0 ) = 0 )
1439 1436 1438 ax-mp
 |-  ( ( n e. NN0 |-> 0 ) ` 0 ) = 0
1440 1439 oveq1i
 |-  ( ( ( n e. NN0 |-> 0 ) ` 0 ) / 2 ) = ( 0 / 2 )
1441 32 recni
 |-  2 e. CC
1442 71 131 gtneii
 |-  2 =/= 0
1443 1441 1442 div0i
 |-  ( 0 / 2 ) = 0
1444 1440 1443 eqtri
 |-  ( ( ( n e. NN0 |-> 0 ) ` 0 ) / 2 ) = 0
1445 1444 oveq2i
 |-  ( ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) - ( ( ( n e. NN0 |-> 0 ) ` 0 ) / 2 ) ) = ( ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) - 0 )
1446 204 mptru
 |-  1 e. CC
1447 1446 1011 ifcli
 |-  if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) e. CC
1448 1151 recni
 |-  if ( ( X mod T ) < _pi , 1 , -u 1 ) e. CC
1449 1286 1448 eqeltri
 |-  ( F ` X ) e. CC
1450 1447 1449 addcli
 |-  ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) e. CC
1451 1450 1441 1442 divcli
 |-  ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) e. CC
1452 1451 subid1i
 |-  ( ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) - 0 ) = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 )
1453 1445 1452 eqtri
 |-  ( ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) - ( ( ( n e. NN0 |-> 0 ) ` 0 ) / 2 ) ) = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 )
1454 1435 1453 breqtri
 |-  seq 1 ( + , ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ) ~~> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 )
1455 1454 a1i
 |-  ( T. -> seq 1 ( + , ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ) ~~> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) )
1456 83 107 1455 sumnnodd
 |-  ( T. -> ( seq 1 ( + , ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) /\ sum_ k e. NN ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = sum_ k e. NN ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) )
1457 1456 mptru
 |-  ( seq 1 ( + , ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) /\ sum_ k e. NN ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` k ) = sum_ k e. NN ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) )
1458 1457 simpli
 |-  seq 1 ( + , ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) ) ~~> ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 )
1459 breq2
 |-  ( n = ( ( 2 x. k ) - 1 ) -> ( 2 || n <-> 2 || ( ( 2 x. k ) - 1 ) ) )
1460 oveq1
 |-  ( n = ( ( 2 x. k ) - 1 ) -> ( n x. _pi ) = ( ( ( 2 x. k ) - 1 ) x. _pi ) )
1461 1460 oveq2d
 |-  ( n = ( ( 2 x. k ) - 1 ) -> ( 4 / ( n x. _pi ) ) = ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) )
1462 oveq1
 |-  ( n = ( ( 2 x. k ) - 1 ) -> ( n x. X ) = ( ( ( 2 x. k ) - 1 ) x. X ) )
1463 1462 fveq2d
 |-  ( n = ( ( 2 x. k ) - 1 ) -> ( sin ` ( n x. X ) ) = ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) )
1464 1461 1463 oveq12d
 |-  ( n = ( ( 2 x. k ) - 1 ) -> ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) = ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) )
1465 1459 1464 ifbieq2d
 |-  ( n = ( ( 2 x. k ) - 1 ) -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) )
1466 1465 adantl
 |-  ( ( k e. NN /\ n = ( ( 2 x. k ) - 1 ) ) -> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) = if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) )
1467 elnnz
 |-  ( ( ( 2 x. k ) - 1 ) e. NN <-> ( ( ( 2 x. k ) - 1 ) e. ZZ /\ 0 < ( ( 2 x. k ) - 1 ) ) )
1468 25 52 1467 sylanbrc
 |-  ( k e. NN -> ( ( 2 x. k ) - 1 ) e. NN )
1469 ovex
 |-  ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) e. _V
1470 93 1469 ifex
 |-  if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) e. _V
1471 1470 a1i
 |-  ( k e. NN -> if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) e. _V )
1472 84 1466 1468 1471 fvmptd
 |-  ( k e. NN -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) = if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) )
1473 dvdsmul1
 |-  ( ( 2 e. ZZ /\ k e. ZZ ) -> 2 || ( 2 x. k ) )
1474 20 22 1473 sylancr
 |-  ( k e. NN -> 2 || ( 2 x. k ) )
1475 23 zcnd
 |-  ( k e. NN -> ( 2 x. k ) e. CC )
1476 1cnd
 |-  ( k e. NN -> 1 e. CC )
1477 1475 1476 npcand
 |-  ( k e. NN -> ( ( ( 2 x. k ) - 1 ) + 1 ) = ( 2 x. k ) )
1478 1477 eqcomd
 |-  ( k e. NN -> ( 2 x. k ) = ( ( ( 2 x. k ) - 1 ) + 1 ) )
1479 1474 1478 breqtrd
 |-  ( k e. NN -> 2 || ( ( ( 2 x. k ) - 1 ) + 1 ) )
1480 oddp1even
 |-  ( ( ( 2 x. k ) - 1 ) e. ZZ -> ( -. 2 || ( ( 2 x. k ) - 1 ) <-> 2 || ( ( ( 2 x. k ) - 1 ) + 1 ) ) )
1481 25 1480 syl
 |-  ( k e. NN -> ( -. 2 || ( ( 2 x. k ) - 1 ) <-> 2 || ( ( ( 2 x. k ) - 1 ) + 1 ) ) )
1482 1479 1481 mpbird
 |-  ( k e. NN -> -. 2 || ( ( 2 x. k ) - 1 ) )
1483 1482 iffalsed
 |-  ( k e. NN -> if ( 2 || ( ( 2 x. k ) - 1 ) , 0 , ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) ) = ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) )
1484 56 a1i
 |-  ( k e. NN -> _pi e. CC )
1485 26 1484 mulcomd
 |-  ( k e. NN -> ( ( ( 2 x. k ) - 1 ) x. _pi ) = ( _pi x. ( ( 2 x. k ) - 1 ) ) )
1486 1485 oveq2d
 |-  ( k e. NN -> ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) = ( 4 / ( _pi x. ( ( 2 x. k ) - 1 ) ) ) )
1487 58 a1i
 |-  ( k e. NN -> 4 e. CC )
1488 73 a1i
 |-  ( k e. NN -> _pi =/= 0 )
1489 1487 1484 26 1488 53 divdiv1d
 |-  ( k e. NN -> ( ( 4 / _pi ) / ( ( 2 x. k ) - 1 ) ) = ( 4 / ( _pi x. ( ( 2 x. k ) - 1 ) ) ) )
1490 1486 1489 eqtr4d
 |-  ( k e. NN -> ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) = ( ( 4 / _pi ) / ( ( 2 x. k ) - 1 ) ) )
1491 1490 oveq1d
 |-  ( k e. NN -> ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) = ( ( ( 4 / _pi ) / ( ( 2 x. k ) - 1 ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) )
1492 1487 1484 1488 divcld
 |-  ( k e. NN -> ( 4 / _pi ) e. CC )
1493 1492 26 30 53 div32d
 |-  ( k e. NN -> ( ( ( 4 / _pi ) / ( ( 2 x. k ) - 1 ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) )
1494 1491 1493 eqtrd
 |-  ( k e. NN -> ( ( 4 / ( ( ( 2 x. k ) - 1 ) x. _pi ) ) x. ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) )
1495 1472 1483 1494 3eqtrd
 |-  ( k e. NN -> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) )
1496 1495 mpteq2ia
 |-  ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) = ( k e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) )
1497 oveq2
 |-  ( k = n -> ( 2 x. k ) = ( 2 x. n ) )
1498 1497 oveq1d
 |-  ( k = n -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. n ) - 1 ) )
1499 1498 oveq1d
 |-  ( k = n -> ( ( ( 2 x. k ) - 1 ) x. X ) = ( ( ( 2 x. n ) - 1 ) x. X ) )
1500 1499 fveq2d
 |-  ( k = n -> ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) = ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) )
1501 1500 1498 oveq12d
 |-  ( k = n -> ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) = ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) )
1502 1501 oveq2d
 |-  ( k = n -> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) )
1503 1502 cbvmptv
 |-  ( k e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) = ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) )
1504 1496 1503 eqtri
 |-  ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) = ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) )
1505 seqeq3
 |-  ( ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) = ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) -> seq 1 ( + , ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) ) = seq 1 ( + , ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ) )
1506 1504 1505 ax-mp
 |-  seq 1 ( + , ( k e. NN |-> ( ( n e. NN |-> if ( 2 || n , 0 , ( ( 4 / ( n x. _pi ) ) x. ( sin ` ( n x. X ) ) ) ) ) ` ( ( 2 x. k ) - 1 ) ) ) ) = seq 1 ( + , ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) )
1507 1 2 3 5 fourierswlem
 |-  Y = ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 )
1508 1507 eqcomi
 |-  ( ( if ( ( X mod T ) e. ( 0 (,] _pi ) , 1 , -u 1 ) + ( F ` X ) ) / 2 ) = Y
1509 1458 1506 1508 3brtr3i
 |-  seq 1 ( + , ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ) ~~> Y
1510 1509 a1i
 |-  ( T. -> seq 1 ( + , ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ) ~~> Y )
1511 eqid
 |-  ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) = ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) )
1512 65 69 74 divcld
 |-  ( n e. NN -> ( 4 / _pi ) e. CC )
1513 1441 a1i
 |-  ( n e. NN -> 2 e. CC )
1514 1513 66 mulcld
 |-  ( n e. NN -> ( 2 x. n ) e. CC )
1515 id
 |-  ( ( 2 x. n ) e. CC -> ( 2 x. n ) e. CC )
1516 1cnd
 |-  ( ( 2 x. n ) e. CC -> 1 e. CC )
1517 1515 1516 subcld
 |-  ( ( 2 x. n ) e. CC -> ( ( 2 x. n ) - 1 ) e. CC )
1518 1514 1517 syl
 |-  ( n e. NN -> ( ( 2 x. n ) - 1 ) e. CC )
1519 1518 77 mulcld
 |-  ( n e. NN -> ( ( ( 2 x. n ) - 1 ) x. X ) e. CC )
1520 1519 sincld
 |-  ( n e. NN -> ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) e. CC )
1521 32 a1i
 |-  ( n e. NN -> 2 e. RR )
1522 nnre
 |-  ( n e. NN -> n e. RR )
1523 1521 1522 remulcld
 |-  ( n e. NN -> ( 2 x. n ) e. RR )
1524 1523 recnd
 |-  ( n e. NN -> ( 2 x. n ) e. CC )
1525 1cnd
 |-  ( n e. NN -> 1 e. CC )
1526 1524 1525 subcld
 |-  ( n e. NN -> ( ( 2 x. n ) - 1 ) e. CC )
1527 1red
 |-  ( n e. NN -> 1 e. RR )
1528 39 1521 eqeltrid
 |-  ( n e. NN -> ( 2 x. 1 ) e. RR )
1529 1lt2
 |-  1 < 2
1530 1529 a1i
 |-  ( n e. NN -> 1 < 2 )
1531 1530 39 breqtrrdi
 |-  ( n e. NN -> 1 < ( 2 x. 1 ) )
1532 47 a1i
 |-  ( n e. NN -> 0 <_ 2 )
1533 nnge1
 |-  ( n e. NN -> 1 <_ n )
1534 1527 1522 1521 1532 1533 lemul2ad
 |-  ( n e. NN -> ( 2 x. 1 ) <_ ( 2 x. n ) )
1535 1527 1528 1523 1531 1534 ltletrd
 |-  ( n e. NN -> 1 < ( 2 x. n ) )
1536 1527 1535 gtned
 |-  ( n e. NN -> ( 2 x. n ) =/= 1 )
1537 1524 1525 1536 subne0d
 |-  ( n e. NN -> ( ( 2 x. n ) - 1 ) =/= 0 )
1538 1520 1526 1537 divcld
 |-  ( n e. NN -> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) e. CC )
1539 1512 1538 mulcld
 |-  ( n e. NN -> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) e. CC )
1540 1511 1539 fmpti
 |-  ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) : NN --> CC
1541 1540 a1i
 |-  ( T. -> ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) : NN --> CC )
1542 1541 ffvelrnda
 |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) e. CC )
1543 divcan6
 |-  ( ( ( _pi e. CC /\ _pi =/= 0 ) /\ ( 4 e. CC /\ 4 =/= 0 ) ) -> ( ( _pi / 4 ) x. ( 4 / _pi ) ) = 1 )
1544 56 73 58 60 1543 mp4an
 |-  ( ( _pi / 4 ) x. ( 4 / _pi ) ) = 1
1545 1544 eqcomi
 |-  1 = ( ( _pi / 4 ) x. ( 4 / _pi ) )
1546 1545 oveq1i
 |-  ( 1 x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = ( ( ( _pi / 4 ) x. ( 4 / _pi ) ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) )
1547 54 mulid2d
 |-  ( k e. NN -> ( 1 x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) )
1548 60 a1i
 |-  ( k e. NN -> 4 =/= 0 )
1549 1484 1487 1548 divcld
 |-  ( k e. NN -> ( _pi / 4 ) e. CC )
1550 1549 1492 54 mulassd
 |-  ( k e. NN -> ( ( ( _pi / 4 ) x. ( 4 / _pi ) ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = ( ( _pi / 4 ) x. ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) )
1551 1546 1547 1550 3eqtr3a
 |-  ( k e. NN -> ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) = ( ( _pi / 4 ) x. ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) )
1552 eqidd
 |-  ( k e. NN -> ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) = ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) )
1553 13 oveq2d
 |-  ( n = k -> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) )
1554 1553 adantl
 |-  ( ( k e. NN /\ n = k ) -> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) )
1555 1494 1469 eqeltrrdi
 |-  ( k e. NN -> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) e. _V )
1556 1552 1554 15 1555 fvmptd
 |-  ( k e. NN -> ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) = ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) )
1557 1556 oveq2d
 |-  ( k e. NN -> ( ( _pi / 4 ) x. ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) ) = ( ( _pi / 4 ) x. ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) )
1558 1557 eqcomd
 |-  ( k e. NN -> ( ( _pi / 4 ) x. ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) ) = ( ( _pi / 4 ) x. ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) ) )
1559 18 1551 1558 3eqtrd
 |-  ( k e. NN -> ( ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ` k ) = ( ( _pi / 4 ) x. ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) ) )
1560 1559 adantl
 |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ` k ) = ( ( _pi / 4 ) x. ( ( n e. NN |-> ( ( 4 / _pi ) x. ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ` k ) ) )
1561 6 7 62 1510 1542 1560 isermulc2
 |-  ( T. -> seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> ( ( _pi / 4 ) x. Y ) )
1562 climrel
 |-  Rel ~~>
1563 1562 releldmi
 |-  ( seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> ( ( _pi / 4 ) x. Y ) -> seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) e. dom ~~> )
1564 1561 1563 syl
 |-  ( T. -> seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) e. dom ~~> )
1565 6 7 19 55 1564 isumclim2
 |-  ( T. -> seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) )
1566 1565 mptru
 |-  seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) )
1567 1561 mptru
 |-  seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> ( ( _pi / 4 ) x. Y )
1568 climuni
 |-  ( ( seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) /\ seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) ~~> ( ( _pi / 4 ) x. Y ) ) -> sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) = ( ( _pi / 4 ) x. Y ) )
1569 1566 1567 1568 mp2an
 |-  sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) = ( ( _pi / 4 ) x. Y )
1570 1569 oveq2i
 |-  ( ( 4 / _pi ) x. sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = ( ( 4 / _pi ) x. ( ( _pi / 4 ) x. Y ) )
1571 58 56 73 divcli
 |-  ( 4 / _pi ) e. CC
1572 56 58 60 divcli
 |-  ( _pi / 4 ) e. CC
1573 1286 1151 eqeltri
 |-  ( F ` X ) e. RR
1574 71 1573 ifcli
 |-  if ( ( X mod _pi ) = 0 , 0 , ( F ` X ) ) e. RR
1575 5 1574 eqeltri
 |-  Y e. RR
1576 1575 recni
 |-  Y e. CC
1577 1571 1572 1576 mulassi
 |-  ( ( ( 4 / _pi ) x. ( _pi / 4 ) ) x. Y ) = ( ( 4 / _pi ) x. ( ( _pi / 4 ) x. Y ) )
1578 1572 1571 1544 mulcomli
 |-  ( ( 4 / _pi ) x. ( _pi / 4 ) ) = 1
1579 1578 oveq1i
 |-  ( ( ( 4 / _pi ) x. ( _pi / 4 ) ) x. Y ) = ( 1 x. Y )
1580 1576 mulid2i
 |-  ( 1 x. Y ) = Y
1581 1579 1580 eqtri
 |-  ( ( ( 4 / _pi ) x. ( _pi / 4 ) ) x. Y ) = Y
1582 1570 1577 1581 3eqtr2i
 |-  ( ( 4 / _pi ) x. sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = Y
1583 seqeq3
 |-  ( S = ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) -> seq 1 ( + , S ) = seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) ) )
1584 4 1583 ax-mp
 |-  seq 1 ( + , S ) = seq 1 ( + , ( n e. NN |-> ( ( sin ` ( ( ( 2 x. n ) - 1 ) x. X ) ) / ( ( 2 x. n ) - 1 ) ) ) )
1585 1584 1567 eqbrtri
 |-  seq 1 ( + , S ) ~~> ( ( _pi / 4 ) x. Y )
1586 1582 1585 pm3.2i
 |-  ( ( ( 4 / _pi ) x. sum_ k e. NN ( ( sin ` ( ( ( 2 x. k ) - 1 ) x. X ) ) / ( ( 2 x. k ) - 1 ) ) ) = Y /\ seq 1 ( + , S ) ~~> ( ( _pi / 4 ) x. Y ) )