Metamath Proof Explorer


Theorem fovcl

Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007) (Proof shortened by AV, 9-Mar-2025)

Ref Expression
Hypothesis fovcl.1
|- F : ( R X. S ) --> C
Assertion fovcl
|- ( ( A e. R /\ B e. S ) -> ( A F B ) e. C )

Proof

Step Hyp Ref Expression
1 fovcl.1
 |-  F : ( R X. S ) --> C
2 1 a1i
 |-  ( A e. R -> F : ( R X. S ) --> C )
3 2 fovcld
 |-  ( ( A e. R /\ A e. R /\ B e. S ) -> ( A F B ) e. C )
4 3 3anidm12
 |-  ( ( A e. R /\ B e. S ) -> ( A F B ) e. C )