Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | fovrn | |- ( ( F : ( R X. S ) --> C /\ A e. R /\ B e. S ) -> ( A F B ) e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi | |- ( ( A e. R /\ B e. S ) -> <. A , B >. e. ( R X. S ) ) |
|
2 | df-ov | |- ( A F B ) = ( F ` <. A , B >. ) |
|
3 | ffvelrn | |- ( ( F : ( R X. S ) --> C /\ <. A , B >. e. ( R X. S ) ) -> ( F ` <. A , B >. ) e. C ) |
|
4 | 2 3 | eqeltrid | |- ( ( F : ( R X. S ) --> C /\ <. A , B >. e. ( R X. S ) ) -> ( A F B ) e. C ) |
5 | 1 4 | sylan2 | |- ( ( F : ( R X. S ) --> C /\ ( A e. R /\ B e. S ) ) -> ( A F B ) e. C ) |
6 | 5 | 3impb | |- ( ( F : ( R X. S ) --> C /\ A e. R /\ B e. S ) -> ( A F B ) e. C ) |