Metamath Proof Explorer


Theorem fovrn

Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion fovrn
|- ( ( F : ( R X. S ) --> C /\ A e. R /\ B e. S ) -> ( A F B ) e. C )

Proof

Step Hyp Ref Expression
1 opelxpi
 |-  ( ( A e. R /\ B e. S ) -> <. A , B >. e. ( R X. S ) )
2 df-ov
 |-  ( A F B ) = ( F ` <. A , B >. )
3 ffvelrn
 |-  ( ( F : ( R X. S ) --> C /\ <. A , B >. e. ( R X. S ) ) -> ( F ` <. A , B >. ) e. C )
4 2 3 eqeltrid
 |-  ( ( F : ( R X. S ) --> C /\ <. A , B >. e. ( R X. S ) ) -> ( A F B ) e. C )
5 1 4 sylan2
 |-  ( ( F : ( R X. S ) --> C /\ ( A e. R /\ B e. S ) ) -> ( A F B ) e. C )
6 5 3impb
 |-  ( ( F : ( R X. S ) --> C /\ A e. R /\ B e. S ) -> ( A F B ) e. C )