Step |
Hyp |
Ref |
Expression |
1 |
|
fpar.1 |
|- H = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
2 |
|
fparlem3 |
|- ( F Fn A -> ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) = U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) ) |
3 |
|
fparlem4 |
|- ( G Fn B -> ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) = U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) |
4 |
2 3
|
ineqan12d |
|- ( ( F Fn A /\ G Fn B ) -> ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) = ( U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) ) |
5 |
|
opex |
|- <. ( F ` x ) , ( G ` y ) >. e. _V |
6 |
5
|
dfmpo |
|- ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) = U_ x e. A U_ y e. B { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } |
7 |
|
inxp |
|- ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = ( ( ( { x } X. _V ) i^i ( _V X. { y } ) ) X. ( ( { ( F ` x ) } X. _V ) i^i ( _V X. { ( G ` y ) } ) ) ) |
8 |
|
inxp |
|- ( ( { x } X. _V ) i^i ( _V X. { y } ) ) = ( ( { x } i^i _V ) X. ( _V i^i { y } ) ) |
9 |
|
inv1 |
|- ( { x } i^i _V ) = { x } |
10 |
|
incom |
|- ( _V i^i { y } ) = ( { y } i^i _V ) |
11 |
|
inv1 |
|- ( { y } i^i _V ) = { y } |
12 |
10 11
|
eqtri |
|- ( _V i^i { y } ) = { y } |
13 |
9 12
|
xpeq12i |
|- ( ( { x } i^i _V ) X. ( _V i^i { y } ) ) = ( { x } X. { y } ) |
14 |
|
vex |
|- x e. _V |
15 |
|
vex |
|- y e. _V |
16 |
14 15
|
xpsn |
|- ( { x } X. { y } ) = { <. x , y >. } |
17 |
8 13 16
|
3eqtri |
|- ( ( { x } X. _V ) i^i ( _V X. { y } ) ) = { <. x , y >. } |
18 |
|
inxp |
|- ( ( { ( F ` x ) } X. _V ) i^i ( _V X. { ( G ` y ) } ) ) = ( ( { ( F ` x ) } i^i _V ) X. ( _V i^i { ( G ` y ) } ) ) |
19 |
|
inv1 |
|- ( { ( F ` x ) } i^i _V ) = { ( F ` x ) } |
20 |
|
incom |
|- ( _V i^i { ( G ` y ) } ) = ( { ( G ` y ) } i^i _V ) |
21 |
|
inv1 |
|- ( { ( G ` y ) } i^i _V ) = { ( G ` y ) } |
22 |
20 21
|
eqtri |
|- ( _V i^i { ( G ` y ) } ) = { ( G ` y ) } |
23 |
19 22
|
xpeq12i |
|- ( ( { ( F ` x ) } i^i _V ) X. ( _V i^i { ( G ` y ) } ) ) = ( { ( F ` x ) } X. { ( G ` y ) } ) |
24 |
|
fvex |
|- ( F ` x ) e. _V |
25 |
|
fvex |
|- ( G ` y ) e. _V |
26 |
24 25
|
xpsn |
|- ( { ( F ` x ) } X. { ( G ` y ) } ) = { <. ( F ` x ) , ( G ` y ) >. } |
27 |
18 23 26
|
3eqtri |
|- ( ( { ( F ` x ) } X. _V ) i^i ( _V X. { ( G ` y ) } ) ) = { <. ( F ` x ) , ( G ` y ) >. } |
28 |
17 27
|
xpeq12i |
|- ( ( ( { x } X. _V ) i^i ( _V X. { y } ) ) X. ( ( { ( F ` x ) } X. _V ) i^i ( _V X. { ( G ` y ) } ) ) ) = ( { <. x , y >. } X. { <. ( F ` x ) , ( G ` y ) >. } ) |
29 |
|
opex |
|- <. x , y >. e. _V |
30 |
29 5
|
xpsn |
|- ( { <. x , y >. } X. { <. ( F ` x ) , ( G ` y ) >. } ) = { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } |
31 |
7 28 30
|
3eqtri |
|- ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } |
32 |
31
|
a1i |
|- ( y e. B -> ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } ) |
33 |
32
|
iuneq2i |
|- U_ y e. B ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = U_ y e. B { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } |
34 |
33
|
a1i |
|- ( x e. A -> U_ y e. B ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = U_ y e. B { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } ) |
35 |
34
|
iuneq2i |
|- U_ x e. A U_ y e. B ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = U_ x e. A U_ y e. B { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } |
36 |
|
2iunin |
|- U_ x e. A U_ y e. B ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = ( U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) |
37 |
6 35 36
|
3eqtr2i |
|- ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) = ( U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) |
38 |
4 1 37
|
3eqtr4g |
|- ( ( F Fn A /\ G Fn B ) -> H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) ) |