| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvres |  |-  ( y e. ( _V X. _V ) -> ( ( 1st |` ( _V X. _V ) ) ` y ) = ( 1st ` y ) ) | 
						
							| 2 | 1 | eqeq1d |  |-  ( y e. ( _V X. _V ) -> ( ( ( 1st |` ( _V X. _V ) ) ` y ) = x <-> ( 1st ` y ) = x ) ) | 
						
							| 3 |  | vex |  |-  x e. _V | 
						
							| 4 | 3 | elsn2 |  |-  ( ( 1st ` y ) e. { x } <-> ( 1st ` y ) = x ) | 
						
							| 5 |  | fvex |  |-  ( 2nd ` y ) e. _V | 
						
							| 6 | 5 | biantru |  |-  ( ( 1st ` y ) e. { x } <-> ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) | 
						
							| 7 | 4 6 | bitr3i |  |-  ( ( 1st ` y ) = x <-> ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) | 
						
							| 8 | 2 7 | bitrdi |  |-  ( y e. ( _V X. _V ) -> ( ( ( 1st |` ( _V X. _V ) ) ` y ) = x <-> ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) ) | 
						
							| 9 | 8 | pm5.32i |  |-  ( ( y e. ( _V X. _V ) /\ ( ( 1st |` ( _V X. _V ) ) ` y ) = x ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) ) | 
						
							| 10 |  | f1stres |  |-  ( 1st |` ( _V X. _V ) ) : ( _V X. _V ) --> _V | 
						
							| 11 |  | ffn |  |-  ( ( 1st |` ( _V X. _V ) ) : ( _V X. _V ) --> _V -> ( 1st |` ( _V X. _V ) ) Fn ( _V X. _V ) ) | 
						
							| 12 |  | fniniseg |  |-  ( ( 1st |` ( _V X. _V ) ) Fn ( _V X. _V ) -> ( y e. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st |` ( _V X. _V ) ) ` y ) = x ) ) ) | 
						
							| 13 | 10 11 12 | mp2b |  |-  ( y e. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st |` ( _V X. _V ) ) ` y ) = x ) ) | 
						
							| 14 |  | elxp7 |  |-  ( y e. ( { x } X. _V ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) ) | 
						
							| 15 | 9 13 14 | 3bitr4i |  |-  ( y e. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) <-> y e. ( { x } X. _V ) ) | 
						
							| 16 | 15 | eqriv |  |-  ( `' ( 1st |` ( _V X. _V ) ) " { x } ) = ( { x } X. _V ) |