Step |
Hyp |
Ref |
Expression |
1 |
|
fvres |
|- ( y e. ( _V X. _V ) -> ( ( 1st |` ( _V X. _V ) ) ` y ) = ( 1st ` y ) ) |
2 |
1
|
eqeq1d |
|- ( y e. ( _V X. _V ) -> ( ( ( 1st |` ( _V X. _V ) ) ` y ) = x <-> ( 1st ` y ) = x ) ) |
3 |
|
vex |
|- x e. _V |
4 |
3
|
elsn2 |
|- ( ( 1st ` y ) e. { x } <-> ( 1st ` y ) = x ) |
5 |
|
fvex |
|- ( 2nd ` y ) e. _V |
6 |
5
|
biantru |
|- ( ( 1st ` y ) e. { x } <-> ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) |
7 |
4 6
|
bitr3i |
|- ( ( 1st ` y ) = x <-> ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) |
8 |
2 7
|
bitrdi |
|- ( y e. ( _V X. _V ) -> ( ( ( 1st |` ( _V X. _V ) ) ` y ) = x <-> ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) ) |
9 |
8
|
pm5.32i |
|- ( ( y e. ( _V X. _V ) /\ ( ( 1st |` ( _V X. _V ) ) ` y ) = x ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) ) |
10 |
|
f1stres |
|- ( 1st |` ( _V X. _V ) ) : ( _V X. _V ) --> _V |
11 |
|
ffn |
|- ( ( 1st |` ( _V X. _V ) ) : ( _V X. _V ) --> _V -> ( 1st |` ( _V X. _V ) ) Fn ( _V X. _V ) ) |
12 |
|
fniniseg |
|- ( ( 1st |` ( _V X. _V ) ) Fn ( _V X. _V ) -> ( y e. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st |` ( _V X. _V ) ) ` y ) = x ) ) ) |
13 |
10 11 12
|
mp2b |
|- ( y e. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st |` ( _V X. _V ) ) ` y ) = x ) ) |
14 |
|
elxp7 |
|- ( y e. ( { x } X. _V ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) ) |
15 |
9 13 14
|
3bitr4i |
|- ( y e. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) <-> y e. ( { x } X. _V ) ) |
16 |
15
|
eqriv |
|- ( `' ( 1st |` ( _V X. _V ) ) " { x } ) = ( { x } X. _V ) |