Step |
Hyp |
Ref |
Expression |
1 |
|
coiun |
|- ( `' ( 1st |` ( _V X. _V ) ) o. U_ x e. A ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) = U_ x e. A ( `' ( 1st |` ( _V X. _V ) ) o. ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) |
2 |
|
inss1 |
|- ( dom F i^i ran ( 1st |` ( _V X. _V ) ) ) C_ dom F |
3 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
4 |
2 3
|
sseqtrid |
|- ( F Fn A -> ( dom F i^i ran ( 1st |` ( _V X. _V ) ) ) C_ A ) |
5 |
|
dfco2a |
|- ( ( dom F i^i ran ( 1st |` ( _V X. _V ) ) ) C_ A -> ( F o. ( 1st |` ( _V X. _V ) ) ) = U_ x e. A ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) |
6 |
4 5
|
syl |
|- ( F Fn A -> ( F o. ( 1st |` ( _V X. _V ) ) ) = U_ x e. A ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) |
7 |
6
|
coeq2d |
|- ( F Fn A -> ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. U_ x e. A ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) ) |
8 |
|
inss1 |
|- ( dom ( { ( F ` x ) } X. ( { x } X. _V ) ) i^i ran ( 1st |` ( _V X. _V ) ) ) C_ dom ( { ( F ` x ) } X. ( { x } X. _V ) ) |
9 |
|
dmxpss |
|- dom ( { ( F ` x ) } X. ( { x } X. _V ) ) C_ { ( F ` x ) } |
10 |
8 9
|
sstri |
|- ( dom ( { ( F ` x ) } X. ( { x } X. _V ) ) i^i ran ( 1st |` ( _V X. _V ) ) ) C_ { ( F ` x ) } |
11 |
|
dfco2a |
|- ( ( dom ( { ( F ` x ) } X. ( { x } X. _V ) ) i^i ran ( 1st |` ( _V X. _V ) ) ) C_ { ( F ` x ) } -> ( ( { ( F ` x ) } X. ( { x } X. _V ) ) o. ( 1st |` ( _V X. _V ) ) ) = U_ y e. { ( F ` x ) } ( ( `' ( 1st |` ( _V X. _V ) ) " { y } ) X. ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) ) ) |
12 |
10 11
|
ax-mp |
|- ( ( { ( F ` x ) } X. ( { x } X. _V ) ) o. ( 1st |` ( _V X. _V ) ) ) = U_ y e. { ( F ` x ) } ( ( `' ( 1st |` ( _V X. _V ) ) " { y } ) X. ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) ) |
13 |
|
fvex |
|- ( F ` x ) e. _V |
14 |
|
fparlem1 |
|- ( `' ( 1st |` ( _V X. _V ) ) " { y } ) = ( { y } X. _V ) |
15 |
|
sneq |
|- ( y = ( F ` x ) -> { y } = { ( F ` x ) } ) |
16 |
15
|
xpeq1d |
|- ( y = ( F ` x ) -> ( { y } X. _V ) = ( { ( F ` x ) } X. _V ) ) |
17 |
14 16
|
eqtrid |
|- ( y = ( F ` x ) -> ( `' ( 1st |` ( _V X. _V ) ) " { y } ) = ( { ( F ` x ) } X. _V ) ) |
18 |
15
|
imaeq2d |
|- ( y = ( F ` x ) -> ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) = ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { ( F ` x ) } ) ) |
19 |
|
df-ima |
|- ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { ( F ` x ) } ) = ran ( ( { ( F ` x ) } X. ( { x } X. _V ) ) |` { ( F ` x ) } ) |
20 |
|
ssid |
|- { ( F ` x ) } C_ { ( F ` x ) } |
21 |
|
xpssres |
|- ( { ( F ` x ) } C_ { ( F ` x ) } -> ( ( { ( F ` x ) } X. ( { x } X. _V ) ) |` { ( F ` x ) } ) = ( { ( F ` x ) } X. ( { x } X. _V ) ) ) |
22 |
20 21
|
ax-mp |
|- ( ( { ( F ` x ) } X. ( { x } X. _V ) ) |` { ( F ` x ) } ) = ( { ( F ` x ) } X. ( { x } X. _V ) ) |
23 |
22
|
rneqi |
|- ran ( ( { ( F ` x ) } X. ( { x } X. _V ) ) |` { ( F ` x ) } ) = ran ( { ( F ` x ) } X. ( { x } X. _V ) ) |
24 |
13
|
snnz |
|- { ( F ` x ) } =/= (/) |
25 |
|
rnxp |
|- ( { ( F ` x ) } =/= (/) -> ran ( { ( F ` x ) } X. ( { x } X. _V ) ) = ( { x } X. _V ) ) |
26 |
24 25
|
ax-mp |
|- ran ( { ( F ` x ) } X. ( { x } X. _V ) ) = ( { x } X. _V ) |
27 |
23 26
|
eqtri |
|- ran ( ( { ( F ` x ) } X. ( { x } X. _V ) ) |` { ( F ` x ) } ) = ( { x } X. _V ) |
28 |
19 27
|
eqtri |
|- ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { ( F ` x ) } ) = ( { x } X. _V ) |
29 |
18 28
|
eqtrdi |
|- ( y = ( F ` x ) -> ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) = ( { x } X. _V ) ) |
30 |
17 29
|
xpeq12d |
|- ( y = ( F ` x ) -> ( ( `' ( 1st |` ( _V X. _V ) ) " { y } ) X. ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) ) = ( ( { ( F ` x ) } X. _V ) X. ( { x } X. _V ) ) ) |
31 |
13 30
|
iunxsn |
|- U_ y e. { ( F ` x ) } ( ( `' ( 1st |` ( _V X. _V ) ) " { y } ) X. ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) ) = ( ( { ( F ` x ) } X. _V ) X. ( { x } X. _V ) ) |
32 |
12 31
|
eqtri |
|- ( ( { ( F ` x ) } X. ( { x } X. _V ) ) o. ( 1st |` ( _V X. _V ) ) ) = ( ( { ( F ` x ) } X. _V ) X. ( { x } X. _V ) ) |
33 |
32
|
cnveqi |
|- `' ( ( { ( F ` x ) } X. ( { x } X. _V ) ) o. ( 1st |` ( _V X. _V ) ) ) = `' ( ( { ( F ` x ) } X. _V ) X. ( { x } X. _V ) ) |
34 |
|
cnvco |
|- `' ( ( { ( F ` x ) } X. ( { x } X. _V ) ) o. ( 1st |` ( _V X. _V ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. `' ( { ( F ` x ) } X. ( { x } X. _V ) ) ) |
35 |
|
cnvxp |
|- `' ( ( { ( F ` x ) } X. _V ) X. ( { x } X. _V ) ) = ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) |
36 |
33 34 35
|
3eqtr3i |
|- ( `' ( 1st |` ( _V X. _V ) ) o. `' ( { ( F ` x ) } X. ( { x } X. _V ) ) ) = ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) |
37 |
|
fparlem1 |
|- ( `' ( 1st |` ( _V X. _V ) ) " { x } ) = ( { x } X. _V ) |
38 |
37
|
xpeq2i |
|- ( { ( F ` x ) } X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) = ( { ( F ` x ) } X. ( { x } X. _V ) ) |
39 |
|
fnsnfv |
|- ( ( F Fn A /\ x e. A ) -> { ( F ` x ) } = ( F " { x } ) ) |
40 |
39
|
xpeq1d |
|- ( ( F Fn A /\ x e. A ) -> ( { ( F ` x ) } X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) = ( ( F " { x } ) X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) ) |
41 |
38 40
|
eqtr3id |
|- ( ( F Fn A /\ x e. A ) -> ( { ( F ` x ) } X. ( { x } X. _V ) ) = ( ( F " { x } ) X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) ) |
42 |
41
|
cnveqd |
|- ( ( F Fn A /\ x e. A ) -> `' ( { ( F ` x ) } X. ( { x } X. _V ) ) = `' ( ( F " { x } ) X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) ) |
43 |
|
cnvxp |
|- `' ( ( F " { x } ) X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) |
44 |
42 43
|
eqtrdi |
|- ( ( F Fn A /\ x e. A ) -> `' ( { ( F ` x ) } X. ( { x } X. _V ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) |
45 |
44
|
coeq2d |
|- ( ( F Fn A /\ x e. A ) -> ( `' ( 1st |` ( _V X. _V ) ) o. `' ( { ( F ` x ) } X. ( { x } X. _V ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) ) |
46 |
36 45
|
eqtr3id |
|- ( ( F Fn A /\ x e. A ) -> ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) ) |
47 |
46
|
iuneq2dv |
|- ( F Fn A -> U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) = U_ x e. A ( `' ( 1st |` ( _V X. _V ) ) o. ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) ) |
48 |
1 7 47
|
3eqtr4a |
|- ( F Fn A -> ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) = U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) ) |