Step |
Hyp |
Ref |
Expression |
1 |
|
fphpd.a |
|- ( ph -> B ~< A ) |
2 |
|
fphpd.b |
|- ( ( ph /\ x e. A ) -> C e. B ) |
3 |
|
fphpd.c |
|- ( x = y -> C = D ) |
4 |
|
domnsym |
|- ( A ~<_ B -> -. B ~< A ) |
5 |
4 1
|
nsyl3 |
|- ( ph -> -. A ~<_ B ) |
6 |
|
relsdom |
|- Rel ~< |
7 |
6
|
brrelex1i |
|- ( B ~< A -> B e. _V ) |
8 |
1 7
|
syl |
|- ( ph -> B e. _V ) |
9 |
8
|
adantr |
|- ( ( ph /\ A. x e. A A. y e. A ( C = D -> x = y ) ) -> B e. _V ) |
10 |
|
nfv |
|- F/ x ( ph /\ a e. A ) |
11 |
|
nfcsb1v |
|- F/_ x [_ a / x ]_ C |
12 |
11
|
nfel1 |
|- F/ x [_ a / x ]_ C e. B |
13 |
10 12
|
nfim |
|- F/ x ( ( ph /\ a e. A ) -> [_ a / x ]_ C e. B ) |
14 |
|
eleq1w |
|- ( x = a -> ( x e. A <-> a e. A ) ) |
15 |
14
|
anbi2d |
|- ( x = a -> ( ( ph /\ x e. A ) <-> ( ph /\ a e. A ) ) ) |
16 |
|
csbeq1a |
|- ( x = a -> C = [_ a / x ]_ C ) |
17 |
16
|
eleq1d |
|- ( x = a -> ( C e. B <-> [_ a / x ]_ C e. B ) ) |
18 |
15 17
|
imbi12d |
|- ( x = a -> ( ( ( ph /\ x e. A ) -> C e. B ) <-> ( ( ph /\ a e. A ) -> [_ a / x ]_ C e. B ) ) ) |
19 |
13 18 2
|
chvarfv |
|- ( ( ph /\ a e. A ) -> [_ a / x ]_ C e. B ) |
20 |
19
|
ex |
|- ( ph -> ( a e. A -> [_ a / x ]_ C e. B ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ A. x e. A A. y e. A ( C = D -> x = y ) ) -> ( a e. A -> [_ a / x ]_ C e. B ) ) |
22 |
|
csbid |
|- [_ x / x ]_ C = C |
23 |
|
vex |
|- y e. _V |
24 |
23 3
|
csbie |
|- [_ y / x ]_ C = D |
25 |
22 24
|
eqeq12i |
|- ( [_ x / x ]_ C = [_ y / x ]_ C <-> C = D ) |
26 |
25
|
imbi1i |
|- ( ( [_ x / x ]_ C = [_ y / x ]_ C -> x = y ) <-> ( C = D -> x = y ) ) |
27 |
26
|
2ralbii |
|- ( A. x e. A A. y e. A ( [_ x / x ]_ C = [_ y / x ]_ C -> x = y ) <-> A. x e. A A. y e. A ( C = D -> x = y ) ) |
28 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
29 |
11 28
|
nfeq |
|- F/ x [_ a / x ]_ C = [_ y / x ]_ C |
30 |
|
nfv |
|- F/ x a = y |
31 |
29 30
|
nfim |
|- F/ x ( [_ a / x ]_ C = [_ y / x ]_ C -> a = y ) |
32 |
|
nfv |
|- F/ y ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) |
33 |
|
csbeq1 |
|- ( x = a -> [_ x / x ]_ C = [_ a / x ]_ C ) |
34 |
33
|
eqeq1d |
|- ( x = a -> ( [_ x / x ]_ C = [_ y / x ]_ C <-> [_ a / x ]_ C = [_ y / x ]_ C ) ) |
35 |
|
equequ1 |
|- ( x = a -> ( x = y <-> a = y ) ) |
36 |
34 35
|
imbi12d |
|- ( x = a -> ( ( [_ x / x ]_ C = [_ y / x ]_ C -> x = y ) <-> ( [_ a / x ]_ C = [_ y / x ]_ C -> a = y ) ) ) |
37 |
|
csbeq1 |
|- ( y = b -> [_ y / x ]_ C = [_ b / x ]_ C ) |
38 |
37
|
eqeq2d |
|- ( y = b -> ( [_ a / x ]_ C = [_ y / x ]_ C <-> [_ a / x ]_ C = [_ b / x ]_ C ) ) |
39 |
|
equequ2 |
|- ( y = b -> ( a = y <-> a = b ) ) |
40 |
38 39
|
imbi12d |
|- ( y = b -> ( ( [_ a / x ]_ C = [_ y / x ]_ C -> a = y ) <-> ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) ) ) |
41 |
31 32 36 40
|
rspc2 |
|- ( ( a e. A /\ b e. A ) -> ( A. x e. A A. y e. A ( [_ x / x ]_ C = [_ y / x ]_ C -> x = y ) -> ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) ) ) |
42 |
41
|
com12 |
|- ( A. x e. A A. y e. A ( [_ x / x ]_ C = [_ y / x ]_ C -> x = y ) -> ( ( a e. A /\ b e. A ) -> ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) ) ) |
43 |
27 42
|
sylbir |
|- ( A. x e. A A. y e. A ( C = D -> x = y ) -> ( ( a e. A /\ b e. A ) -> ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) ) ) |
44 |
|
id |
|- ( ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) -> ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) ) |
45 |
|
csbeq1 |
|- ( a = b -> [_ a / x ]_ C = [_ b / x ]_ C ) |
46 |
44 45
|
impbid1 |
|- ( ( [_ a / x ]_ C = [_ b / x ]_ C -> a = b ) -> ( [_ a / x ]_ C = [_ b / x ]_ C <-> a = b ) ) |
47 |
43 46
|
syl6 |
|- ( A. x e. A A. y e. A ( C = D -> x = y ) -> ( ( a e. A /\ b e. A ) -> ( [_ a / x ]_ C = [_ b / x ]_ C <-> a = b ) ) ) |
48 |
47
|
adantl |
|- ( ( ph /\ A. x e. A A. y e. A ( C = D -> x = y ) ) -> ( ( a e. A /\ b e. A ) -> ( [_ a / x ]_ C = [_ b / x ]_ C <-> a = b ) ) ) |
49 |
21 48
|
dom2d |
|- ( ( ph /\ A. x e. A A. y e. A ( C = D -> x = y ) ) -> ( B e. _V -> A ~<_ B ) ) |
50 |
9 49
|
mpd |
|- ( ( ph /\ A. x e. A A. y e. A ( C = D -> x = y ) ) -> A ~<_ B ) |
51 |
5 50
|
mtand |
|- ( ph -> -. A. x e. A A. y e. A ( C = D -> x = y ) ) |
52 |
|
ancom |
|- ( ( -. x = y /\ C = D ) <-> ( C = D /\ -. x = y ) ) |
53 |
|
df-ne |
|- ( x =/= y <-> -. x = y ) |
54 |
53
|
anbi1i |
|- ( ( x =/= y /\ C = D ) <-> ( -. x = y /\ C = D ) ) |
55 |
|
pm4.61 |
|- ( -. ( C = D -> x = y ) <-> ( C = D /\ -. x = y ) ) |
56 |
52 54 55
|
3bitr4i |
|- ( ( x =/= y /\ C = D ) <-> -. ( C = D -> x = y ) ) |
57 |
56
|
rexbii |
|- ( E. y e. A ( x =/= y /\ C = D ) <-> E. y e. A -. ( C = D -> x = y ) ) |
58 |
|
rexnal |
|- ( E. y e. A -. ( C = D -> x = y ) <-> -. A. y e. A ( C = D -> x = y ) ) |
59 |
57 58
|
bitri |
|- ( E. y e. A ( x =/= y /\ C = D ) <-> -. A. y e. A ( C = D -> x = y ) ) |
60 |
59
|
rexbii |
|- ( E. x e. A E. y e. A ( x =/= y /\ C = D ) <-> E. x e. A -. A. y e. A ( C = D -> x = y ) ) |
61 |
|
rexnal |
|- ( E. x e. A -. A. y e. A ( C = D -> x = y ) <-> -. A. x e. A A. y e. A ( C = D -> x = y ) ) |
62 |
60 61
|
bitri |
|- ( E. x e. A E. y e. A ( x =/= y /\ C = D ) <-> -. A. x e. A A. y e. A ( C = D -> x = y ) ) |
63 |
51 62
|
sylibr |
|- ( ph -> E. x e. A E. y e. A ( x =/= y /\ C = D ) ) |