Description: A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fpmd.a | |- ( ph -> A e. V ) |
|
fpmd.b | |- ( ph -> B e. W ) |
||
fpmd.c | |- ( ph -> C C_ A ) |
||
fpmd.f | |- ( ph -> F : C --> B ) |
||
Assertion | fpmd | |- ( ph -> F e. ( B ^pm A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fpmd.a | |- ( ph -> A e. V ) |
|
2 | fpmd.b | |- ( ph -> B e. W ) |
|
3 | fpmd.c | |- ( ph -> C C_ A ) |
|
4 | fpmd.f | |- ( ph -> F : C --> B ) |
|
5 | elpm2r | |- ( ( ( B e. W /\ A e. V ) /\ ( F : C --> B /\ C C_ A ) ) -> F e. ( B ^pm A ) ) |
|
6 | 2 1 4 3 5 | syl22anc | |- ( ph -> F e. ( B ^pm A ) ) |