Metamath Proof Explorer


Theorem fpmd

Description: A total function is a partial function. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses fpmd.a
|- ( ph -> A e. V )
fpmd.b
|- ( ph -> B e. W )
fpmd.c
|- ( ph -> C C_ A )
fpmd.f
|- ( ph -> F : C --> B )
Assertion fpmd
|- ( ph -> F e. ( B ^pm A ) )

Proof

Step Hyp Ref Expression
1 fpmd.a
 |-  ( ph -> A e. V )
2 fpmd.b
 |-  ( ph -> B e. W )
3 fpmd.c
 |-  ( ph -> C C_ A )
4 fpmd.f
 |-  ( ph -> F : C --> B )
5 elpm2r
 |-  ( ( ( B e. W /\ A e. V ) /\ ( F : C --> B /\ C C_ A ) ) -> F e. ( B ^pm A ) )
6 2 1 4 3 5 syl22anc
 |-  ( ph -> F e. ( B ^pm A ) )