| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fpr.1 |  |-  A e. _V | 
						
							| 2 |  | fpr.2 |  |-  B e. _V | 
						
							| 3 |  | fpr.3 |  |-  C e. _V | 
						
							| 4 |  | fpr.4 |  |-  D e. _V | 
						
							| 5 | 1 2 3 4 | funpr |  |-  ( A =/= B -> Fun { <. A , C >. , <. B , D >. } ) | 
						
							| 6 | 3 4 | dmprop |  |-  dom { <. A , C >. , <. B , D >. } = { A , B } | 
						
							| 7 |  | df-fn |  |-  ( { <. A , C >. , <. B , D >. } Fn { A , B } <-> ( Fun { <. A , C >. , <. B , D >. } /\ dom { <. A , C >. , <. B , D >. } = { A , B } ) ) | 
						
							| 8 | 5 6 7 | sylanblrc |  |-  ( A =/= B -> { <. A , C >. , <. B , D >. } Fn { A , B } ) | 
						
							| 9 |  | df-pr |  |-  { <. A , C >. , <. B , D >. } = ( { <. A , C >. } u. { <. B , D >. } ) | 
						
							| 10 | 9 | rneqi |  |-  ran { <. A , C >. , <. B , D >. } = ran ( { <. A , C >. } u. { <. B , D >. } ) | 
						
							| 11 |  | rnun |  |-  ran ( { <. A , C >. } u. { <. B , D >. } ) = ( ran { <. A , C >. } u. ran { <. B , D >. } ) | 
						
							| 12 | 1 | rnsnop |  |-  ran { <. A , C >. } = { C } | 
						
							| 13 | 2 | rnsnop |  |-  ran { <. B , D >. } = { D } | 
						
							| 14 | 12 13 | uneq12i |  |-  ( ran { <. A , C >. } u. ran { <. B , D >. } ) = ( { C } u. { D } ) | 
						
							| 15 |  | df-pr |  |-  { C , D } = ( { C } u. { D } ) | 
						
							| 16 | 14 15 | eqtr4i |  |-  ( ran { <. A , C >. } u. ran { <. B , D >. } ) = { C , D } | 
						
							| 17 | 10 11 16 | 3eqtri |  |-  ran { <. A , C >. , <. B , D >. } = { C , D } | 
						
							| 18 | 17 | eqimssi |  |-  ran { <. A , C >. , <. B , D >. } C_ { C , D } | 
						
							| 19 |  | df-f |  |-  ( { <. A , C >. , <. B , D >. } : { A , B } --> { C , D } <-> ( { <. A , C >. , <. B , D >. } Fn { A , B } /\ ran { <. A , C >. , <. B , D >. } C_ { C , D } ) ) | 
						
							| 20 | 8 18 19 | sylanblrc |  |-  ( A =/= B -> { <. A , C >. , <. B , D >. } : { A , B } --> { C , D } ) |