| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fpr2a.1 |  |-  F = frecs ( R , A , G ) | 
						
							| 2 |  | fveq2 |  |-  ( y = X -> ( F ` y ) = ( F ` X ) ) | 
						
							| 3 |  | id |  |-  ( y = X -> y = X ) | 
						
							| 4 |  | predeq3 |  |-  ( y = X -> Pred ( R , A , y ) = Pred ( R , A , X ) ) | 
						
							| 5 | 4 | reseq2d |  |-  ( y = X -> ( F |` Pred ( R , A , y ) ) = ( F |` Pred ( R , A , X ) ) ) | 
						
							| 6 | 3 5 | oveq12d |  |-  ( y = X -> ( y G ( F |` Pred ( R , A , y ) ) ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) | 
						
							| 7 | 2 6 | eqeq12d |  |-  ( y = X -> ( ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) <-> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) | 
						
							| 8 | 7 | imbi2d |  |-  ( y = X -> ( ( ( R Fr A /\ R Po A /\ R Se A ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) <-> ( ( R Fr A /\ R Po A /\ R Se A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) ) | 
						
							| 9 |  | eqid |  |-  { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 10 | 9 1 | fprlem1 |  |-  ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) | 
						
							| 11 | 9 1 10 | frrlem10 |  |-  ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ y e. dom F ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) | 
						
							| 12 | 11 | expcom |  |-  ( y e. dom F -> ( ( R Fr A /\ R Po A /\ R Se A ) -> ( F ` y ) = ( y G ( F |` Pred ( R , A , y ) ) ) ) ) | 
						
							| 13 | 8 12 | vtoclga |  |-  ( X e. dom F -> ( ( R Fr A /\ R Po A /\ R Se A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) ) | 
						
							| 14 | 13 | impcom |  |-  ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |