Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> F : { A , B } --> C ) |
2 |
|
prid1g |
|- ( A e. V -> A e. { A , B } ) |
3 |
2
|
ad2antrr |
|- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> A e. { A , B } ) |
4 |
1 3
|
ffvelrnd |
|- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> ( F ` A ) e. C ) |
5 |
|
prid2g |
|- ( B e. W -> B e. { A , B } ) |
6 |
5
|
ad2antlr |
|- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> B e. { A , B } ) |
7 |
1 6
|
ffvelrnd |
|- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> ( F ` B ) e. C ) |
8 |
|
ffn |
|- ( F : { A , B } --> C -> F Fn { A , B } ) |
9 |
8
|
adantl |
|- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> F Fn { A , B } ) |
10 |
|
fnpr2g |
|- ( ( A e. V /\ B e. W ) -> ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |
11 |
10
|
adantr |
|- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> ( F Fn { A , B } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |
12 |
9 11
|
mpbid |
|- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
13 |
4 7 12
|
3jca |
|- ( ( ( A e. V /\ B e. W ) /\ F : { A , B } --> C ) -> ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |
14 |
10
|
biimpar |
|- ( ( ( A e. V /\ B e. W ) /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) -> F Fn { A , B } ) |
15 |
14
|
3ad2antr3 |
|- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> F Fn { A , B } ) |
16 |
|
simpr3 |
|- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
17 |
2
|
ad2antrr |
|- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> A e. { A , B } ) |
18 |
|
simpr1 |
|- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> ( F ` A ) e. C ) |
19 |
17 18
|
opelxpd |
|- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> <. A , ( F ` A ) >. e. ( { A , B } X. C ) ) |
20 |
5
|
ad2antlr |
|- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> B e. { A , B } ) |
21 |
|
simpr2 |
|- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> ( F ` B ) e. C ) |
22 |
20 21
|
opelxpd |
|- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> <. B , ( F ` B ) >. e. ( { A , B } X. C ) ) |
23 |
19 22
|
prssd |
|- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } C_ ( { A , B } X. C ) ) |
24 |
16 23
|
eqsstrd |
|- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> F C_ ( { A , B } X. C ) ) |
25 |
|
dff2 |
|- ( F : { A , B } --> C <-> ( F Fn { A , B } /\ F C_ ( { A , B } X. C ) ) ) |
26 |
15 24 25
|
sylanbrc |
|- ( ( ( A e. V /\ B e. W ) /\ ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) -> F : { A , B } --> C ) |
27 |
13 26
|
impbida |
|- ( ( A e. V /\ B e. W ) -> ( F : { A , B } --> C <-> ( ( F ` A ) e. C /\ ( F ` B ) e. C /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) ) |