| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- w e. _V |
| 2 |
1
|
elpred |
|- ( z e. _V -> ( w e. Pred ( R , A , z ) <-> ( w e. A /\ w R z ) ) ) |
| 3 |
2
|
elv |
|- ( w e. Pred ( R , A , z ) <-> ( w e. A /\ w R z ) ) |
| 4 |
|
simprl |
|- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> x e. A ) |
| 5 |
|
simpll2 |
|- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) -> R Po A ) |
| 6 |
5
|
adantr |
|- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> R Po A ) |
| 7 |
|
simprl |
|- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) -> w e. A ) |
| 8 |
7
|
adantr |
|- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> w e. A ) |
| 9 |
|
simpllr |
|- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> z e. A ) |
| 10 |
4 8 9
|
3jca |
|- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> ( x e. A /\ w e. A /\ z e. A ) ) |
| 11 |
6 10
|
jca |
|- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> ( R Po A /\ ( x e. A /\ w e. A /\ z e. A ) ) ) |
| 12 |
|
simprr |
|- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> x R w ) |
| 13 |
|
simplrr |
|- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> w R z ) |
| 14 |
12 13
|
jca |
|- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> ( x R w /\ w R z ) ) |
| 15 |
|
potr |
|- ( ( R Po A /\ ( x e. A /\ w e. A /\ z e. A ) ) -> ( ( x R w /\ w R z ) -> x R z ) ) |
| 16 |
11 14 15
|
sylc |
|- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> x R z ) |
| 17 |
4 16
|
jca |
|- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> ( x e. A /\ x R z ) ) |
| 18 |
17
|
ex |
|- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) -> ( ( x e. A /\ x R w ) -> ( x e. A /\ x R z ) ) ) |
| 19 |
|
vex |
|- x e. _V |
| 20 |
19
|
elpred |
|- ( w e. _V -> ( x e. Pred ( R , A , w ) <-> ( x e. A /\ x R w ) ) ) |
| 21 |
20
|
elv |
|- ( x e. Pred ( R , A , w ) <-> ( x e. A /\ x R w ) ) |
| 22 |
19
|
elpred |
|- ( z e. _V -> ( x e. Pred ( R , A , z ) <-> ( x e. A /\ x R z ) ) ) |
| 23 |
22
|
elv |
|- ( x e. Pred ( R , A , z ) <-> ( x e. A /\ x R z ) ) |
| 24 |
18 21 23
|
3imtr4g |
|- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) -> ( x e. Pred ( R , A , w ) -> x e. Pred ( R , A , z ) ) ) |
| 25 |
24
|
ssrdv |
|- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) -> Pred ( R , A , w ) C_ Pred ( R , A , z ) ) |
| 26 |
3 25
|
sylan2b |
|- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ w e. Pred ( R , A , z ) ) -> Pred ( R , A , w ) C_ Pred ( R , A , z ) ) |
| 27 |
26
|
ralrimiva |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> A. w e. Pred ( R , A , z ) Pred ( R , A , w ) C_ Pred ( R , A , z ) ) |