Metamath Proof Explorer


Theorem fprod0

Description: A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprod0.kph
|- F/ k ph
fprod0.kc
|- F/_ k C
fprod0.a
|- ( ph -> A e. Fin )
fprod0.b
|- ( ( ph /\ k e. A ) -> B e. CC )
fprod0.bc
|- ( k = K -> B = C )
fprod0.k
|- ( ph -> K e. A )
fprod0.c
|- ( ph -> C = 0 )
Assertion fprod0
|- ( ph -> prod_ k e. A B = 0 )

Proof

Step Hyp Ref Expression
1 fprod0.kph
 |-  F/ k ph
2 fprod0.kc
 |-  F/_ k C
3 fprod0.a
 |-  ( ph -> A e. Fin )
4 fprod0.b
 |-  ( ( ph /\ k e. A ) -> B e. CC )
5 fprod0.bc
 |-  ( k = K -> B = C )
6 fprod0.k
 |-  ( ph -> K e. A )
7 fprod0.c
 |-  ( ph -> C = 0 )
8 2 a1i
 |-  ( ph -> F/_ k C )
9 5 adantl
 |-  ( ( ph /\ k = K ) -> B = C )
10 1 8 3 4 6 9 fprodsplit1f
 |-  ( ph -> prod_ k e. A B = ( C x. prod_ k e. ( A \ { K } ) B ) )
11 7 oveq1d
 |-  ( ph -> ( C x. prod_ k e. ( A \ { K } ) B ) = ( 0 x. prod_ k e. ( A \ { K } ) B ) )
12 diffi
 |-  ( A e. Fin -> ( A \ { K } ) e. Fin )
13 3 12 syl
 |-  ( ph -> ( A \ { K } ) e. Fin )
14 simpl
 |-  ( ( ph /\ k e. ( A \ { K } ) ) -> ph )
15 eldifi
 |-  ( k e. ( A \ { K } ) -> k e. A )
16 15 adantl
 |-  ( ( ph /\ k e. ( A \ { K } ) ) -> k e. A )
17 14 16 4 syl2anc
 |-  ( ( ph /\ k e. ( A \ { K } ) ) -> B e. CC )
18 1 13 17 fprodclf
 |-  ( ph -> prod_ k e. ( A \ { K } ) B e. CC )
19 18 mul02d
 |-  ( ph -> ( 0 x. prod_ k e. ( A \ { K } ) B ) = 0 )
20 10 11 19 3eqtrd
 |-  ( ph -> prod_ k e. A B = 0 )