| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprod0.kph |  |-  F/ k ph | 
						
							| 2 |  | fprod0.kc |  |-  F/_ k C | 
						
							| 3 |  | fprod0.a |  |-  ( ph -> A e. Fin ) | 
						
							| 4 |  | fprod0.b |  |-  ( ( ph /\ k e. A ) -> B e. CC ) | 
						
							| 5 |  | fprod0.bc |  |-  ( k = K -> B = C ) | 
						
							| 6 |  | fprod0.k |  |-  ( ph -> K e. A ) | 
						
							| 7 |  | fprod0.c |  |-  ( ph -> C = 0 ) | 
						
							| 8 | 2 | a1i |  |-  ( ph -> F/_ k C ) | 
						
							| 9 | 5 | adantl |  |-  ( ( ph /\ k = K ) -> B = C ) | 
						
							| 10 | 1 8 3 4 6 9 | fprodsplit1f |  |-  ( ph -> prod_ k e. A B = ( C x. prod_ k e. ( A \ { K } ) B ) ) | 
						
							| 11 | 7 | oveq1d |  |-  ( ph -> ( C x. prod_ k e. ( A \ { K } ) B ) = ( 0 x. prod_ k e. ( A \ { K } ) B ) ) | 
						
							| 12 |  | diffi |  |-  ( A e. Fin -> ( A \ { K } ) e. Fin ) | 
						
							| 13 | 3 12 | syl |  |-  ( ph -> ( A \ { K } ) e. Fin ) | 
						
							| 14 |  | simpl |  |-  ( ( ph /\ k e. ( A \ { K } ) ) -> ph ) | 
						
							| 15 |  | eldifi |  |-  ( k e. ( A \ { K } ) -> k e. A ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ k e. ( A \ { K } ) ) -> k e. A ) | 
						
							| 17 | 14 16 4 | syl2anc |  |-  ( ( ph /\ k e. ( A \ { K } ) ) -> B e. CC ) | 
						
							| 18 | 1 13 17 | fprodclf |  |-  ( ph -> prod_ k e. ( A \ { K } ) B e. CC ) | 
						
							| 19 | 18 | mul02d |  |-  ( ph -> ( 0 x. prod_ k e. ( A \ { K } ) B ) = 0 ) | 
						
							| 20 | 10 11 19 | 3eqtrd |  |-  ( ph -> prod_ k e. A B = 0 ) |