Metamath Proof Explorer


Theorem fprod1

Description: A finite product of only one term is the term itself. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypothesis prodsn.1
|- ( k = M -> A = B )
Assertion fprod1
|- ( ( M e. ZZ /\ B e. CC ) -> prod_ k e. ( M ... M ) A = B )

Proof

Step Hyp Ref Expression
1 prodsn.1
 |-  ( k = M -> A = B )
2 fzsn
 |-  ( M e. ZZ -> ( M ... M ) = { M } )
3 2 prodeq1d
 |-  ( M e. ZZ -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A )
4 3 adantr
 |-  ( ( M e. ZZ /\ B e. CC ) -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A )
5 1 prodsn
 |-  ( ( M e. ZZ /\ B e. CC ) -> prod_ k e. { M } A = B )
6 4 5 eqtrd
 |-  ( ( M e. ZZ /\ B e. CC ) -> prod_ k e. ( M ... M ) A = B )