Description: A finite product of only one term is the term itself. (Contributed by Scott Fenton, 14-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prodsn.1 | |- ( k = M -> A = B ) |
|
| Assertion | fprod1 | |- ( ( M e. ZZ /\ B e. CC ) -> prod_ k e. ( M ... M ) A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodsn.1 | |- ( k = M -> A = B ) |
|
| 2 | fzsn | |- ( M e. ZZ -> ( M ... M ) = { M } ) |
|
| 3 | 2 | prodeq1d | |- ( M e. ZZ -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A ) |
| 4 | 3 | adantr | |- ( ( M e. ZZ /\ B e. CC ) -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A ) |
| 5 | 1 | prodsn | |- ( ( M e. ZZ /\ B e. CC ) -> prod_ k e. { M } A = B ) |
| 6 | 4 5 | eqtrd | |- ( ( M e. ZZ /\ B e. CC ) -> prod_ k e. ( M ... M ) A = B ) |