| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodabs.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
fprodabs.2 |
|- ( ph -> N e. Z ) |
| 3 |
|
fprodabs.3 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 4 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 5 |
|
oveq2 |
|- ( a = M -> ( M ... a ) = ( M ... M ) ) |
| 6 |
5
|
prodeq1d |
|- ( a = M -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... M ) A ) |
| 7 |
6
|
fveq2d |
|- ( a = M -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... M ) A ) ) |
| 8 |
5
|
prodeq1d |
|- ( a = M -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) |
| 9 |
7 8
|
eqeq12d |
|- ( a = M -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) |
| 10 |
9
|
imbi2d |
|- ( a = M -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) ) |
| 11 |
|
oveq2 |
|- ( a = n -> ( M ... a ) = ( M ... n ) ) |
| 12 |
11
|
prodeq1d |
|- ( a = n -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... n ) A ) |
| 13 |
12
|
fveq2d |
|- ( a = n -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... n ) A ) ) |
| 14 |
11
|
prodeq1d |
|- ( a = n -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) |
| 15 |
13 14
|
eqeq12d |
|- ( a = n -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) ) |
| 16 |
15
|
imbi2d |
|- ( a = n -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) ) ) |
| 17 |
|
oveq2 |
|- ( a = ( n + 1 ) -> ( M ... a ) = ( M ... ( n + 1 ) ) ) |
| 18 |
17
|
prodeq1d |
|- ( a = ( n + 1 ) -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... ( n + 1 ) ) A ) |
| 19 |
18
|
fveq2d |
|- ( a = ( n + 1 ) -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) ) |
| 20 |
17
|
prodeq1d |
|- ( a = ( n + 1 ) -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) |
| 21 |
19 20
|
eqeq12d |
|- ( a = ( n + 1 ) -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) |
| 22 |
21
|
imbi2d |
|- ( a = ( n + 1 ) -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
| 23 |
|
oveq2 |
|- ( a = N -> ( M ... a ) = ( M ... N ) ) |
| 24 |
23
|
prodeq1d |
|- ( a = N -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... N ) A ) |
| 25 |
24
|
fveq2d |
|- ( a = N -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... N ) A ) ) |
| 26 |
23
|
prodeq1d |
|- ( a = N -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) |
| 27 |
25 26
|
eqeq12d |
|- ( a = N -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) |
| 28 |
27
|
imbi2d |
|- ( a = N -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) ) |
| 29 |
|
csbfv2g |
|- ( M e. ZZ -> [_ M / k ]_ ( abs ` A ) = ( abs ` [_ M / k ]_ A ) ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ ( abs ` A ) = ( abs ` [_ M / k ]_ A ) ) |
| 31 |
|
fzsn |
|- ( M e. ZZ -> ( M ... M ) = { M } ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ M e. ZZ ) -> ( M ... M ) = { M } ) |
| 33 |
32
|
prodeq1d |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) ( abs ` A ) = prod_ k e. { M } ( abs ` A ) ) |
| 34 |
|
simpr |
|- ( ( ph /\ M e. ZZ ) -> M e. ZZ ) |
| 35 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 36 |
35 1
|
eleqtrrdi |
|- ( M e. ZZ -> M e. Z ) |
| 37 |
3
|
ralrimiva |
|- ( ph -> A. k e. Z A e. CC ) |
| 38 |
|
nfcsb1v |
|- F/_ k [_ M / k ]_ A |
| 39 |
38
|
nfel1 |
|- F/ k [_ M / k ]_ A e. CC |
| 40 |
|
csbeq1a |
|- ( k = M -> A = [_ M / k ]_ A ) |
| 41 |
40
|
eleq1d |
|- ( k = M -> ( A e. CC <-> [_ M / k ]_ A e. CC ) ) |
| 42 |
39 41
|
rspc |
|- ( M e. Z -> ( A. k e. Z A e. CC -> [_ M / k ]_ A e. CC ) ) |
| 43 |
37 42
|
mpan9 |
|- ( ( ph /\ M e. Z ) -> [_ M / k ]_ A e. CC ) |
| 44 |
36 43
|
sylan2 |
|- ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ A e. CC ) |
| 45 |
44
|
abscld |
|- ( ( ph /\ M e. ZZ ) -> ( abs ` [_ M / k ]_ A ) e. RR ) |
| 46 |
45
|
recnd |
|- ( ( ph /\ M e. ZZ ) -> ( abs ` [_ M / k ]_ A ) e. CC ) |
| 47 |
30 46
|
eqeltrd |
|- ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ ( abs ` A ) e. CC ) |
| 48 |
|
prodsns |
|- ( ( M e. ZZ /\ [_ M / k ]_ ( abs ` A ) e. CC ) -> prod_ k e. { M } ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) |
| 49 |
34 47 48
|
syl2anc |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. { M } ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) |
| 50 |
33 49
|
eqtrd |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) |
| 51 |
31
|
prodeq1d |
|- ( M e. ZZ -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A ) |
| 52 |
51
|
adantl |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A ) |
| 53 |
|
prodsns |
|- ( ( M e. ZZ /\ [_ M / k ]_ A e. CC ) -> prod_ k e. { M } A = [_ M / k ]_ A ) |
| 54 |
34 44 53
|
syl2anc |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. { M } A = [_ M / k ]_ A ) |
| 55 |
52 54
|
eqtrd |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) A = [_ M / k ]_ A ) |
| 56 |
55
|
fveq2d |
|- ( ( ph /\ M e. ZZ ) -> ( abs ` prod_ k e. ( M ... M ) A ) = ( abs ` [_ M / k ]_ A ) ) |
| 57 |
30 50 56
|
3eqtr4rd |
|- ( ( ph /\ M e. ZZ ) -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) |
| 58 |
57
|
expcom |
|- ( M e. ZZ -> ( ph -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) |
| 59 |
|
simp3 |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) |
| 60 |
|
ovex |
|- ( n + 1 ) e. _V |
| 61 |
|
csbfv2g |
|- ( ( n + 1 ) e. _V -> [_ ( n + 1 ) / k ]_ ( abs ` A ) = ( abs ` [_ ( n + 1 ) / k ]_ A ) ) |
| 62 |
60 61
|
ax-mp |
|- [_ ( n + 1 ) / k ]_ ( abs ` A ) = ( abs ` [_ ( n + 1 ) / k ]_ A ) |
| 63 |
62
|
eqcomi |
|- ( abs ` [_ ( n + 1 ) / k ]_ A ) = [_ ( n + 1 ) / k ]_ ( abs ` A ) |
| 64 |
63
|
a1i |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` [_ ( n + 1 ) / k ]_ A ) = [_ ( n + 1 ) / k ]_ ( abs ` A ) ) |
| 65 |
59 64
|
oveq12d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) |
| 66 |
|
simpr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> n e. ( ZZ>= ` M ) ) |
| 67 |
|
elfzuz |
|- ( k e. ( M ... ( n + 1 ) ) -> k e. ( ZZ>= ` M ) ) |
| 68 |
67 1
|
eleqtrrdi |
|- ( k e. ( M ... ( n + 1 ) ) -> k e. Z ) |
| 69 |
68 3
|
sylan2 |
|- ( ( ph /\ k e. ( M ... ( n + 1 ) ) ) -> A e. CC ) |
| 70 |
69
|
adantlr |
|- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> A e. CC ) |
| 71 |
66 70
|
fprodp1s |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... ( n + 1 ) ) A = ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) |
| 72 |
71
|
fveq2d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( abs ` ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) ) |
| 73 |
|
fzfid |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( M ... n ) e. Fin ) |
| 74 |
|
elfzuz |
|- ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) |
| 75 |
74 1
|
eleqtrrdi |
|- ( k e. ( M ... n ) -> k e. Z ) |
| 76 |
75 3
|
sylan2 |
|- ( ( ph /\ k e. ( M ... n ) ) -> A e. CC ) |
| 77 |
76
|
adantlr |
|- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... n ) ) -> A e. CC ) |
| 78 |
73 77
|
fprodcl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... n ) A e. CC ) |
| 79 |
|
peano2uz |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. ( ZZ>= ` M ) ) |
| 80 |
79 1
|
eleqtrrdi |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. Z ) |
| 81 |
|
nfcsb1v |
|- F/_ k [_ ( n + 1 ) / k ]_ A |
| 82 |
81
|
nfel1 |
|- F/ k [_ ( n + 1 ) / k ]_ A e. CC |
| 83 |
|
csbeq1a |
|- ( k = ( n + 1 ) -> A = [_ ( n + 1 ) / k ]_ A ) |
| 84 |
83
|
eleq1d |
|- ( k = ( n + 1 ) -> ( A e. CC <-> [_ ( n + 1 ) / k ]_ A e. CC ) ) |
| 85 |
82 84
|
rspc |
|- ( ( n + 1 ) e. Z -> ( A. k e. Z A e. CC -> [_ ( n + 1 ) / k ]_ A e. CC ) ) |
| 86 |
37 85
|
mpan9 |
|- ( ( ph /\ ( n + 1 ) e. Z ) -> [_ ( n + 1 ) / k ]_ A e. CC ) |
| 87 |
80 86
|
sylan2 |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> [_ ( n + 1 ) / k ]_ A e. CC ) |
| 88 |
78 87
|
absmuld |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) |
| 89 |
72 88
|
eqtrd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) |
| 90 |
89
|
3adant3 |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) |
| 91 |
70
|
abscld |
|- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> ( abs ` A ) e. RR ) |
| 92 |
91
|
recnd |
|- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> ( abs ` A ) e. CC ) |
| 93 |
66 92
|
fprodp1s |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) |
| 94 |
93
|
3adant3 |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) |
| 95 |
65 90 94
|
3eqtr4d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) |
| 96 |
95
|
3exp |
|- ( ph -> ( n e. ( ZZ>= ` M ) -> ( ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
| 97 |
96
|
com12 |
|- ( n e. ( ZZ>= ` M ) -> ( ph -> ( ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
| 98 |
97
|
a2d |
|- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( ph -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
| 99 |
10 16 22 28 58 98
|
uzind4 |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) |
| 100 |
4 99
|
mpcom |
|- ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) |