| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodabs.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | fprodabs.2 |  |-  ( ph -> N e. Z ) | 
						
							| 3 |  | fprodabs.3 |  |-  ( ( ph /\ k e. Z ) -> A e. CC ) | 
						
							| 4 | 2 1 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 5 |  | oveq2 |  |-  ( a = M -> ( M ... a ) = ( M ... M ) ) | 
						
							| 6 | 5 | prodeq1d |  |-  ( a = M -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... M ) A ) | 
						
							| 7 | 6 | fveq2d |  |-  ( a = M -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... M ) A ) ) | 
						
							| 8 | 5 | prodeq1d |  |-  ( a = M -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) | 
						
							| 9 | 7 8 | eqeq12d |  |-  ( a = M -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) | 
						
							| 10 | 9 | imbi2d |  |-  ( a = M -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) ) | 
						
							| 11 |  | oveq2 |  |-  ( a = n -> ( M ... a ) = ( M ... n ) ) | 
						
							| 12 | 11 | prodeq1d |  |-  ( a = n -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... n ) A ) | 
						
							| 13 | 12 | fveq2d |  |-  ( a = n -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... n ) A ) ) | 
						
							| 14 | 11 | prodeq1d |  |-  ( a = n -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) | 
						
							| 15 | 13 14 | eqeq12d |  |-  ( a = n -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( a = n -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) ) ) | 
						
							| 17 |  | oveq2 |  |-  ( a = ( n + 1 ) -> ( M ... a ) = ( M ... ( n + 1 ) ) ) | 
						
							| 18 | 17 | prodeq1d |  |-  ( a = ( n + 1 ) -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... ( n + 1 ) ) A ) | 
						
							| 19 | 18 | fveq2d |  |-  ( a = ( n + 1 ) -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) ) | 
						
							| 20 | 17 | prodeq1d |  |-  ( a = ( n + 1 ) -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) | 
						
							| 21 | 19 20 | eqeq12d |  |-  ( a = ( n + 1 ) -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) | 
						
							| 22 | 21 | imbi2d |  |-  ( a = ( n + 1 ) -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) | 
						
							| 23 |  | oveq2 |  |-  ( a = N -> ( M ... a ) = ( M ... N ) ) | 
						
							| 24 | 23 | prodeq1d |  |-  ( a = N -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... N ) A ) | 
						
							| 25 | 24 | fveq2d |  |-  ( a = N -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... N ) A ) ) | 
						
							| 26 | 23 | prodeq1d |  |-  ( a = N -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) | 
						
							| 27 | 25 26 | eqeq12d |  |-  ( a = N -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) | 
						
							| 28 | 27 | imbi2d |  |-  ( a = N -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) ) | 
						
							| 29 |  | csbfv2g |  |-  ( M e. ZZ -> [_ M / k ]_ ( abs ` A ) = ( abs ` [_ M / k ]_ A ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ ( abs ` A ) = ( abs ` [_ M / k ]_ A ) ) | 
						
							| 31 |  | fzsn |  |-  ( M e. ZZ -> ( M ... M ) = { M } ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ph /\ M e. ZZ ) -> ( M ... M ) = { M } ) | 
						
							| 33 | 32 | prodeq1d |  |-  ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) ( abs ` A ) = prod_ k e. { M } ( abs ` A ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ph /\ M e. ZZ ) -> M e. ZZ ) | 
						
							| 35 |  | uzid |  |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) ) | 
						
							| 36 | 35 1 | eleqtrrdi |  |-  ( M e. ZZ -> M e. Z ) | 
						
							| 37 | 3 | ralrimiva |  |-  ( ph -> A. k e. Z A e. CC ) | 
						
							| 38 |  | nfcsb1v |  |-  F/_ k [_ M / k ]_ A | 
						
							| 39 | 38 | nfel1 |  |-  F/ k [_ M / k ]_ A e. CC | 
						
							| 40 |  | csbeq1a |  |-  ( k = M -> A = [_ M / k ]_ A ) | 
						
							| 41 | 40 | eleq1d |  |-  ( k = M -> ( A e. CC <-> [_ M / k ]_ A e. CC ) ) | 
						
							| 42 | 39 41 | rspc |  |-  ( M e. Z -> ( A. k e. Z A e. CC -> [_ M / k ]_ A e. CC ) ) | 
						
							| 43 | 37 42 | mpan9 |  |-  ( ( ph /\ M e. Z ) -> [_ M / k ]_ A e. CC ) | 
						
							| 44 | 36 43 | sylan2 |  |-  ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ A e. CC ) | 
						
							| 45 | 44 | abscld |  |-  ( ( ph /\ M e. ZZ ) -> ( abs ` [_ M / k ]_ A ) e. RR ) | 
						
							| 46 | 45 | recnd |  |-  ( ( ph /\ M e. ZZ ) -> ( abs ` [_ M / k ]_ A ) e. CC ) | 
						
							| 47 | 30 46 | eqeltrd |  |-  ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ ( abs ` A ) e. CC ) | 
						
							| 48 |  | prodsns |  |-  ( ( M e. ZZ /\ [_ M / k ]_ ( abs ` A ) e. CC ) -> prod_ k e. { M } ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) | 
						
							| 49 | 34 47 48 | syl2anc |  |-  ( ( ph /\ M e. ZZ ) -> prod_ k e. { M } ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) | 
						
							| 50 | 33 49 | eqtrd |  |-  ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) | 
						
							| 51 | 31 | prodeq1d |  |-  ( M e. ZZ -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A ) | 
						
							| 52 | 51 | adantl |  |-  ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A ) | 
						
							| 53 |  | prodsns |  |-  ( ( M e. ZZ /\ [_ M / k ]_ A e. CC ) -> prod_ k e. { M } A = [_ M / k ]_ A ) | 
						
							| 54 | 34 44 53 | syl2anc |  |-  ( ( ph /\ M e. ZZ ) -> prod_ k e. { M } A = [_ M / k ]_ A ) | 
						
							| 55 | 52 54 | eqtrd |  |-  ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) A = [_ M / k ]_ A ) | 
						
							| 56 | 55 | fveq2d |  |-  ( ( ph /\ M e. ZZ ) -> ( abs ` prod_ k e. ( M ... M ) A ) = ( abs ` [_ M / k ]_ A ) ) | 
						
							| 57 | 30 50 56 | 3eqtr4rd |  |-  ( ( ph /\ M e. ZZ ) -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) | 
						
							| 58 | 57 | expcom |  |-  ( M e. ZZ -> ( ph -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) | 
						
							| 59 |  | simp3 |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) | 
						
							| 60 |  | ovex |  |-  ( n + 1 ) e. _V | 
						
							| 61 |  | csbfv2g |  |-  ( ( n + 1 ) e. _V -> [_ ( n + 1 ) / k ]_ ( abs ` A ) = ( abs ` [_ ( n + 1 ) / k ]_ A ) ) | 
						
							| 62 | 60 61 | ax-mp |  |-  [_ ( n + 1 ) / k ]_ ( abs ` A ) = ( abs ` [_ ( n + 1 ) / k ]_ A ) | 
						
							| 63 | 62 | eqcomi |  |-  ( abs ` [_ ( n + 1 ) / k ]_ A ) = [_ ( n + 1 ) / k ]_ ( abs ` A ) | 
						
							| 64 | 63 | a1i |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` [_ ( n + 1 ) / k ]_ A ) = [_ ( n + 1 ) / k ]_ ( abs ` A ) ) | 
						
							| 65 | 59 64 | oveq12d |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) | 
						
							| 66 |  | simpr |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> n e. ( ZZ>= ` M ) ) | 
						
							| 67 |  | elfzuz |  |-  ( k e. ( M ... ( n + 1 ) ) -> k e. ( ZZ>= ` M ) ) | 
						
							| 68 | 67 1 | eleqtrrdi |  |-  ( k e. ( M ... ( n + 1 ) ) -> k e. Z ) | 
						
							| 69 | 68 3 | sylan2 |  |-  ( ( ph /\ k e. ( M ... ( n + 1 ) ) ) -> A e. CC ) | 
						
							| 70 | 69 | adantlr |  |-  ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> A e. CC ) | 
						
							| 71 | 66 70 | fprodp1s |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... ( n + 1 ) ) A = ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) | 
						
							| 72 | 71 | fveq2d |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( abs ` ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) ) | 
						
							| 73 |  | fzfid |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( M ... n ) e. Fin ) | 
						
							| 74 |  | elfzuz |  |-  ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) | 
						
							| 75 | 74 1 | eleqtrrdi |  |-  ( k e. ( M ... n ) -> k e. Z ) | 
						
							| 76 | 75 3 | sylan2 |  |-  ( ( ph /\ k e. ( M ... n ) ) -> A e. CC ) | 
						
							| 77 | 76 | adantlr |  |-  ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... n ) ) -> A e. CC ) | 
						
							| 78 | 73 77 | fprodcl |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... n ) A e. CC ) | 
						
							| 79 |  | peano2uz |  |-  ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 80 | 79 1 | eleqtrrdi |  |-  ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. Z ) | 
						
							| 81 |  | nfcsb1v |  |-  F/_ k [_ ( n + 1 ) / k ]_ A | 
						
							| 82 | 81 | nfel1 |  |-  F/ k [_ ( n + 1 ) / k ]_ A e. CC | 
						
							| 83 |  | csbeq1a |  |-  ( k = ( n + 1 ) -> A = [_ ( n + 1 ) / k ]_ A ) | 
						
							| 84 | 83 | eleq1d |  |-  ( k = ( n + 1 ) -> ( A e. CC <-> [_ ( n + 1 ) / k ]_ A e. CC ) ) | 
						
							| 85 | 82 84 | rspc |  |-  ( ( n + 1 ) e. Z -> ( A. k e. Z A e. CC -> [_ ( n + 1 ) / k ]_ A e. CC ) ) | 
						
							| 86 | 37 85 | mpan9 |  |-  ( ( ph /\ ( n + 1 ) e. Z ) -> [_ ( n + 1 ) / k ]_ A e. CC ) | 
						
							| 87 | 80 86 | sylan2 |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> [_ ( n + 1 ) / k ]_ A e. CC ) | 
						
							| 88 | 78 87 | absmuld |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) | 
						
							| 89 | 72 88 | eqtrd |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) | 
						
							| 90 | 89 | 3adant3 |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) | 
						
							| 91 | 70 | abscld |  |-  ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> ( abs ` A ) e. RR ) | 
						
							| 92 | 91 | recnd |  |-  ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> ( abs ` A ) e. CC ) | 
						
							| 93 | 66 92 | fprodp1s |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) | 
						
							| 94 | 93 | 3adant3 |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) | 
						
							| 95 | 65 90 94 | 3eqtr4d |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) | 
						
							| 96 | 95 | 3exp |  |-  ( ph -> ( n e. ( ZZ>= ` M ) -> ( ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) | 
						
							| 97 | 96 | com12 |  |-  ( n e. ( ZZ>= ` M ) -> ( ph -> ( ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) | 
						
							| 98 | 97 | a2d |  |-  ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( ph -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) | 
						
							| 99 | 10 16 22 28 58 98 | uzind4 |  |-  ( N e. ( ZZ>= ` M ) -> ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) | 
						
							| 100 | 4 99 | mpcom |  |-  ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) |