Step |
Hyp |
Ref |
Expression |
1 |
|
fprodabs.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
fprodabs.2 |
|- ( ph -> N e. Z ) |
3 |
|
fprodabs.3 |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
4 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
5 |
|
oveq2 |
|- ( a = M -> ( M ... a ) = ( M ... M ) ) |
6 |
5
|
prodeq1d |
|- ( a = M -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... M ) A ) |
7 |
6
|
fveq2d |
|- ( a = M -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... M ) A ) ) |
8 |
5
|
prodeq1d |
|- ( a = M -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) |
9 |
7 8
|
eqeq12d |
|- ( a = M -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) |
10 |
9
|
imbi2d |
|- ( a = M -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) ) |
11 |
|
oveq2 |
|- ( a = n -> ( M ... a ) = ( M ... n ) ) |
12 |
11
|
prodeq1d |
|- ( a = n -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... n ) A ) |
13 |
12
|
fveq2d |
|- ( a = n -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... n ) A ) ) |
14 |
11
|
prodeq1d |
|- ( a = n -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) |
15 |
13 14
|
eqeq12d |
|- ( a = n -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) ) |
16 |
15
|
imbi2d |
|- ( a = n -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) ) ) |
17 |
|
oveq2 |
|- ( a = ( n + 1 ) -> ( M ... a ) = ( M ... ( n + 1 ) ) ) |
18 |
17
|
prodeq1d |
|- ( a = ( n + 1 ) -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... ( n + 1 ) ) A ) |
19 |
18
|
fveq2d |
|- ( a = ( n + 1 ) -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) ) |
20 |
17
|
prodeq1d |
|- ( a = ( n + 1 ) -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) |
21 |
19 20
|
eqeq12d |
|- ( a = ( n + 1 ) -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) |
22 |
21
|
imbi2d |
|- ( a = ( n + 1 ) -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
23 |
|
oveq2 |
|- ( a = N -> ( M ... a ) = ( M ... N ) ) |
24 |
23
|
prodeq1d |
|- ( a = N -> prod_ k e. ( M ... a ) A = prod_ k e. ( M ... N ) A ) |
25 |
24
|
fveq2d |
|- ( a = N -> ( abs ` prod_ k e. ( M ... a ) A ) = ( abs ` prod_ k e. ( M ... N ) A ) ) |
26 |
23
|
prodeq1d |
|- ( a = N -> prod_ k e. ( M ... a ) ( abs ` A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) |
27 |
25 26
|
eqeq12d |
|- ( a = N -> ( ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) <-> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) |
28 |
27
|
imbi2d |
|- ( a = N -> ( ( ph -> ( abs ` prod_ k e. ( M ... a ) A ) = prod_ k e. ( M ... a ) ( abs ` A ) ) <-> ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) ) |
29 |
|
csbfv2g |
|- ( M e. ZZ -> [_ M / k ]_ ( abs ` A ) = ( abs ` [_ M / k ]_ A ) ) |
30 |
29
|
adantl |
|- ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ ( abs ` A ) = ( abs ` [_ M / k ]_ A ) ) |
31 |
|
fzsn |
|- ( M e. ZZ -> ( M ... M ) = { M } ) |
32 |
31
|
adantl |
|- ( ( ph /\ M e. ZZ ) -> ( M ... M ) = { M } ) |
33 |
32
|
prodeq1d |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) ( abs ` A ) = prod_ k e. { M } ( abs ` A ) ) |
34 |
|
simpr |
|- ( ( ph /\ M e. ZZ ) -> M e. ZZ ) |
35 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
36 |
35 1
|
eleqtrrdi |
|- ( M e. ZZ -> M e. Z ) |
37 |
3
|
ralrimiva |
|- ( ph -> A. k e. Z A e. CC ) |
38 |
|
nfcsb1v |
|- F/_ k [_ M / k ]_ A |
39 |
38
|
nfel1 |
|- F/ k [_ M / k ]_ A e. CC |
40 |
|
csbeq1a |
|- ( k = M -> A = [_ M / k ]_ A ) |
41 |
40
|
eleq1d |
|- ( k = M -> ( A e. CC <-> [_ M / k ]_ A e. CC ) ) |
42 |
39 41
|
rspc |
|- ( M e. Z -> ( A. k e. Z A e. CC -> [_ M / k ]_ A e. CC ) ) |
43 |
37 42
|
mpan9 |
|- ( ( ph /\ M e. Z ) -> [_ M / k ]_ A e. CC ) |
44 |
36 43
|
sylan2 |
|- ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ A e. CC ) |
45 |
44
|
abscld |
|- ( ( ph /\ M e. ZZ ) -> ( abs ` [_ M / k ]_ A ) e. RR ) |
46 |
45
|
recnd |
|- ( ( ph /\ M e. ZZ ) -> ( abs ` [_ M / k ]_ A ) e. CC ) |
47 |
30 46
|
eqeltrd |
|- ( ( ph /\ M e. ZZ ) -> [_ M / k ]_ ( abs ` A ) e. CC ) |
48 |
|
prodsns |
|- ( ( M e. ZZ /\ [_ M / k ]_ ( abs ` A ) e. CC ) -> prod_ k e. { M } ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) |
49 |
34 47 48
|
syl2anc |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. { M } ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) |
50 |
33 49
|
eqtrd |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) ( abs ` A ) = [_ M / k ]_ ( abs ` A ) ) |
51 |
31
|
prodeq1d |
|- ( M e. ZZ -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A ) |
52 |
51
|
adantl |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) A = prod_ k e. { M } A ) |
53 |
|
prodsns |
|- ( ( M e. ZZ /\ [_ M / k ]_ A e. CC ) -> prod_ k e. { M } A = [_ M / k ]_ A ) |
54 |
34 44 53
|
syl2anc |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. { M } A = [_ M / k ]_ A ) |
55 |
52 54
|
eqtrd |
|- ( ( ph /\ M e. ZZ ) -> prod_ k e. ( M ... M ) A = [_ M / k ]_ A ) |
56 |
55
|
fveq2d |
|- ( ( ph /\ M e. ZZ ) -> ( abs ` prod_ k e. ( M ... M ) A ) = ( abs ` [_ M / k ]_ A ) ) |
57 |
30 50 56
|
3eqtr4rd |
|- ( ( ph /\ M e. ZZ ) -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) |
58 |
57
|
expcom |
|- ( M e. ZZ -> ( ph -> ( abs ` prod_ k e. ( M ... M ) A ) = prod_ k e. ( M ... M ) ( abs ` A ) ) ) |
59 |
|
simp3 |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) |
60 |
|
ovex |
|- ( n + 1 ) e. _V |
61 |
|
csbfv2g |
|- ( ( n + 1 ) e. _V -> [_ ( n + 1 ) / k ]_ ( abs ` A ) = ( abs ` [_ ( n + 1 ) / k ]_ A ) ) |
62 |
60 61
|
ax-mp |
|- [_ ( n + 1 ) / k ]_ ( abs ` A ) = ( abs ` [_ ( n + 1 ) / k ]_ A ) |
63 |
62
|
eqcomi |
|- ( abs ` [_ ( n + 1 ) / k ]_ A ) = [_ ( n + 1 ) / k ]_ ( abs ` A ) |
64 |
63
|
a1i |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` [_ ( n + 1 ) / k ]_ A ) = [_ ( n + 1 ) / k ]_ ( abs ` A ) ) |
65 |
59 64
|
oveq12d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) |
66 |
|
simpr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> n e. ( ZZ>= ` M ) ) |
67 |
|
elfzuz |
|- ( k e. ( M ... ( n + 1 ) ) -> k e. ( ZZ>= ` M ) ) |
68 |
67 1
|
eleqtrrdi |
|- ( k e. ( M ... ( n + 1 ) ) -> k e. Z ) |
69 |
68 3
|
sylan2 |
|- ( ( ph /\ k e. ( M ... ( n + 1 ) ) ) -> A e. CC ) |
70 |
69
|
adantlr |
|- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> A e. CC ) |
71 |
66 70
|
fprodp1s |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... ( n + 1 ) ) A = ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) |
72 |
71
|
fveq2d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( abs ` ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) ) |
73 |
|
fzfid |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( M ... n ) e. Fin ) |
74 |
|
elfzuz |
|- ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) |
75 |
74 1
|
eleqtrrdi |
|- ( k e. ( M ... n ) -> k e. Z ) |
76 |
75 3
|
sylan2 |
|- ( ( ph /\ k e. ( M ... n ) ) -> A e. CC ) |
77 |
76
|
adantlr |
|- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... n ) ) -> A e. CC ) |
78 |
73 77
|
fprodcl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... n ) A e. CC ) |
79 |
|
peano2uz |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. ( ZZ>= ` M ) ) |
80 |
79 1
|
eleqtrrdi |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. Z ) |
81 |
|
nfcsb1v |
|- F/_ k [_ ( n + 1 ) / k ]_ A |
82 |
81
|
nfel1 |
|- F/ k [_ ( n + 1 ) / k ]_ A e. CC |
83 |
|
csbeq1a |
|- ( k = ( n + 1 ) -> A = [_ ( n + 1 ) / k ]_ A ) |
84 |
83
|
eleq1d |
|- ( k = ( n + 1 ) -> ( A e. CC <-> [_ ( n + 1 ) / k ]_ A e. CC ) ) |
85 |
82 84
|
rspc |
|- ( ( n + 1 ) e. Z -> ( A. k e. Z A e. CC -> [_ ( n + 1 ) / k ]_ A e. CC ) ) |
86 |
37 85
|
mpan9 |
|- ( ( ph /\ ( n + 1 ) e. Z ) -> [_ ( n + 1 ) / k ]_ A e. CC ) |
87 |
80 86
|
sylan2 |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> [_ ( n + 1 ) / k ]_ A e. CC ) |
88 |
78 87
|
absmuld |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` ( prod_ k e. ( M ... n ) A x. [_ ( n + 1 ) / k ]_ A ) ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) |
89 |
72 88
|
eqtrd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) |
90 |
89
|
3adant3 |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = ( ( abs ` prod_ k e. ( M ... n ) A ) x. ( abs ` [_ ( n + 1 ) / k ]_ A ) ) ) |
91 |
70
|
abscld |
|- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> ( abs ` A ) e. RR ) |
92 |
91
|
recnd |
|- ( ( ( ph /\ n e. ( ZZ>= ` M ) ) /\ k e. ( M ... ( n + 1 ) ) ) -> ( abs ` A ) e. CC ) |
93 |
66 92
|
fprodp1s |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) |
94 |
93
|
3adant3 |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) = ( prod_ k e. ( M ... n ) ( abs ` A ) x. [_ ( n + 1 ) / k ]_ ( abs ` A ) ) ) |
95 |
65 90 94
|
3eqtr4d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) /\ ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) |
96 |
95
|
3exp |
|- ( ph -> ( n e. ( ZZ>= ` M ) -> ( ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
97 |
96
|
com12 |
|- ( n e. ( ZZ>= ` M ) -> ( ph -> ( ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
98 |
97
|
a2d |
|- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( abs ` prod_ k e. ( M ... n ) A ) = prod_ k e. ( M ... n ) ( abs ` A ) ) -> ( ph -> ( abs ` prod_ k e. ( M ... ( n + 1 ) ) A ) = prod_ k e. ( M ... ( n + 1 ) ) ( abs ` A ) ) ) ) |
99 |
10 16 22 28 58 98
|
uzind4 |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) ) |
100 |
4 99
|
mpcom |
|- ( ph -> ( abs ` prod_ k e. ( M ... N ) A ) = prod_ k e. ( M ... N ) ( abs ` A ) ) |