Metamath Proof Explorer


Theorem fprodcl

Description: Closure of a finite product of complex numbers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1
|- ( ph -> A e. Fin )
fprodcl.2
|- ( ( ph /\ k e. A ) -> B e. CC )
Assertion fprodcl
|- ( ph -> prod_ k e. A B e. CC )

Proof

Step Hyp Ref Expression
1 fprodcl.1
 |-  ( ph -> A e. Fin )
2 fprodcl.2
 |-  ( ( ph /\ k e. A ) -> B e. CC )
3 ssidd
 |-  ( ph -> CC C_ CC )
4 mulcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC )
5 4 adantl
 |-  ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC )
6 1cnd
 |-  ( ph -> 1 e. CC )
7 3 5 1 2 6 fprodcllem
 |-  ( ph -> prod_ k e. A B e. CC )