Description: Closure of a finite product of complex numbers. (Contributed by Scott Fenton, 14-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodcl.1 | |- ( ph -> A e. Fin ) |
|
fprodcl.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
Assertion | fprodcl | |- ( ph -> prod_ k e. A B e. CC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcl.1 | |- ( ph -> A e. Fin ) |
|
2 | fprodcl.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
3 | ssidd | |- ( ph -> CC C_ CC ) |
|
4 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
5 | 4 | adantl | |- ( ( ph /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) |
6 | 1cnd | |- ( ph -> 1 e. CC ) |
|
7 | 3 5 1 2 6 | fprodcllem | |- ( ph -> prod_ k e. A B e. CC ) |