Step |
Hyp |
Ref |
Expression |
1 |
|
fprodcllem.1 |
|- ( ph -> S C_ CC ) |
2 |
|
fprodcllem.2 |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
3 |
|
fprodcllem.3 |
|- ( ph -> A e. Fin ) |
4 |
|
fprodcllem.4 |
|- ( ( ph /\ k e. A ) -> B e. S ) |
5 |
|
fprodcllem.5 |
|- ( ph -> 1 e. S ) |
6 |
|
prodeq1 |
|- ( A = (/) -> prod_ k e. A B = prod_ k e. (/) B ) |
7 |
|
prod0 |
|- prod_ k e. (/) B = 1 |
8 |
6 7
|
eqtrdi |
|- ( A = (/) -> prod_ k e. A B = 1 ) |
9 |
8
|
adantl |
|- ( ( ph /\ A = (/) ) -> prod_ k e. A B = 1 ) |
10 |
5
|
adantr |
|- ( ( ph /\ A = (/) ) -> 1 e. S ) |
11 |
9 10
|
eqeltrd |
|- ( ( ph /\ A = (/) ) -> prod_ k e. A B e. S ) |
12 |
1
|
adantr |
|- ( ( ph /\ A =/= (/) ) -> S C_ CC ) |
13 |
2
|
adantlr |
|- ( ( ( ph /\ A =/= (/) ) /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
14 |
3
|
adantr |
|- ( ( ph /\ A =/= (/) ) -> A e. Fin ) |
15 |
4
|
adantlr |
|- ( ( ( ph /\ A =/= (/) ) /\ k e. A ) -> B e. S ) |
16 |
|
simpr |
|- ( ( ph /\ A =/= (/) ) -> A =/= (/) ) |
17 |
12 13 14 15 16
|
fprodcl2lem |
|- ( ( ph /\ A =/= (/) ) -> prod_ k e. A B e. S ) |
18 |
11 17
|
pm2.61dane |
|- ( ph -> prod_ k e. A B e. S ) |