| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodcllemf.ph |  |-  F/ k ph | 
						
							| 2 |  | fprodcllemf.s |  |-  ( ph -> S C_ CC ) | 
						
							| 3 |  | fprodcllemf.xy |  |-  ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) | 
						
							| 4 |  | fprodcllemf.a |  |-  ( ph -> A e. Fin ) | 
						
							| 5 |  | fprodcllemf.b |  |-  ( ( ph /\ k e. A ) -> B e. S ) | 
						
							| 6 |  | fprodcllemf.1 |  |-  ( ph -> 1 e. S ) | 
						
							| 7 |  | nfcv |  |-  F/_ j B | 
						
							| 8 |  | nfcsb1v |  |-  F/_ k [_ j / k ]_ B | 
						
							| 9 |  | csbeq1a |  |-  ( k = j -> B = [_ j / k ]_ B ) | 
						
							| 10 | 7 8 9 | cbvprodi |  |-  prod_ k e. A B = prod_ j e. A [_ j / k ]_ B | 
						
							| 11 | 5 | ex |  |-  ( ph -> ( k e. A -> B e. S ) ) | 
						
							| 12 | 1 11 | ralrimi |  |-  ( ph -> A. k e. A B e. S ) | 
						
							| 13 |  | rspsbc |  |-  ( j e. A -> ( A. k e. A B e. S -> [. j / k ]. B e. S ) ) | 
						
							| 14 | 12 13 | mpan9 |  |-  ( ( ph /\ j e. A ) -> [. j / k ]. B e. S ) | 
						
							| 15 |  | sbcel1g |  |-  ( j e. _V -> ( [. j / k ]. B e. S <-> [_ j / k ]_ B e. S ) ) | 
						
							| 16 | 15 | elv |  |-  ( [. j / k ]. B e. S <-> [_ j / k ]_ B e. S ) | 
						
							| 17 | 14 16 | sylib |  |-  ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. S ) | 
						
							| 18 | 2 3 4 17 6 | fprodcllem |  |-  ( ph -> prod_ j e. A [_ j / k ]_ B e. S ) | 
						
							| 19 | 10 18 | eqeltrid |  |-  ( ph -> prod_ k e. A B e. S ) |