Metamath Proof Explorer


Theorem fprodcom

Description: Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018)

Ref Expression
Hypotheses fprodcom.1
|- ( ph -> A e. Fin )
fprodcom.2
|- ( ph -> B e. Fin )
fprodcom.3
|- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC )
Assertion fprodcom
|- ( ph -> prod_ j e. A prod_ k e. B C = prod_ k e. B prod_ j e. A C )

Proof

Step Hyp Ref Expression
1 fprodcom.1
 |-  ( ph -> A e. Fin )
2 fprodcom.2
 |-  ( ph -> B e. Fin )
3 fprodcom.3
 |-  ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC )
4 2 adantr
 |-  ( ( ph /\ j e. A ) -> B e. Fin )
5 ancom
 |-  ( ( j e. A /\ k e. B ) <-> ( k e. B /\ j e. A ) )
6 5 a1i
 |-  ( ph -> ( ( j e. A /\ k e. B ) <-> ( k e. B /\ j e. A ) ) )
7 1 2 4 6 3 fprodcom2
 |-  ( ph -> prod_ j e. A prod_ k e. B C = prod_ k e. B prod_ j e. A C )