Description: Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodcom.1 | |- ( ph -> A e. Fin ) |
|
fprodcom.2 | |- ( ph -> B e. Fin ) |
||
fprodcom.3 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC ) |
||
Assertion | fprodcom | |- ( ph -> prod_ j e. A prod_ k e. B C = prod_ k e. B prod_ j e. A C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcom.1 | |- ( ph -> A e. Fin ) |
|
2 | fprodcom.2 | |- ( ph -> B e. Fin ) |
|
3 | fprodcom.3 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC ) |
|
4 | 2 | adantr | |- ( ( ph /\ j e. A ) -> B e. Fin ) |
5 | ancom | |- ( ( j e. A /\ k e. B ) <-> ( k e. B /\ j e. A ) ) |
|
6 | 5 | a1i | |- ( ph -> ( ( j e. A /\ k e. B ) <-> ( k e. B /\ j e. A ) ) ) |
7 | 1 2 4 6 3 | fprodcom2 | |- ( ph -> prod_ j e. A prod_ k e. B C = prod_ k e. B prod_ j e. A C ) |