Step |
Hyp |
Ref |
Expression |
1 |
|
fprodcom2.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fprodcom2.2 |
|- ( ph -> C e. Fin ) |
3 |
|
fprodcom2.3 |
|- ( ( ph /\ j e. A ) -> B e. Fin ) |
4 |
|
fprodcom2.4 |
|- ( ph -> ( ( j e. A /\ k e. B ) <-> ( k e. C /\ j e. D ) ) ) |
5 |
|
fprodcom2.5 |
|- ( ( ph /\ ( j e. A /\ k e. B ) ) -> E e. CC ) |
6 |
|
relxp |
|- Rel ( { j } X. B ) |
7 |
6
|
rgenw |
|- A. j e. A Rel ( { j } X. B ) |
8 |
|
reliun |
|- ( Rel U_ j e. A ( { j } X. B ) <-> A. j e. A Rel ( { j } X. B ) ) |
9 |
7 8
|
mpbir |
|- Rel U_ j e. A ( { j } X. B ) |
10 |
|
relcnv |
|- Rel `' U_ k e. C ( { k } X. D ) |
11 |
|
ancom |
|- ( ( x = j /\ y = k ) <-> ( y = k /\ x = j ) ) |
12 |
|
vex |
|- x e. _V |
13 |
|
vex |
|- y e. _V |
14 |
12 13
|
opth |
|- ( <. x , y >. = <. j , k >. <-> ( x = j /\ y = k ) ) |
15 |
13 12
|
opth |
|- ( <. y , x >. = <. k , j >. <-> ( y = k /\ x = j ) ) |
16 |
11 14 15
|
3bitr4i |
|- ( <. x , y >. = <. j , k >. <-> <. y , x >. = <. k , j >. ) |
17 |
16
|
a1i |
|- ( ph -> ( <. x , y >. = <. j , k >. <-> <. y , x >. = <. k , j >. ) ) |
18 |
17 4
|
anbi12d |
|- ( ph -> ( ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) <-> ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) ) |
19 |
18
|
2exbidv |
|- ( ph -> ( E. j E. k ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) ) |
20 |
|
eliunxp |
|- ( <. x , y >. e. U_ j e. A ( { j } X. B ) <-> E. j E. k ( <. x , y >. = <. j , k >. /\ ( j e. A /\ k e. B ) ) ) |
21 |
12 13
|
opelcnv |
|- ( <. x , y >. e. `' U_ k e. C ( { k } X. D ) <-> <. y , x >. e. U_ k e. C ( { k } X. D ) ) |
22 |
|
eliunxp |
|- ( <. y , x >. e. U_ k e. C ( { k } X. D ) <-> E. k E. j ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
23 |
|
excom |
|- ( E. k E. j ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
24 |
21 22 23
|
3bitri |
|- ( <. x , y >. e. `' U_ k e. C ( { k } X. D ) <-> E. j E. k ( <. y , x >. = <. k , j >. /\ ( k e. C /\ j e. D ) ) ) |
25 |
19 20 24
|
3bitr4g |
|- ( ph -> ( <. x , y >. e. U_ j e. A ( { j } X. B ) <-> <. x , y >. e. `' U_ k e. C ( { k } X. D ) ) ) |
26 |
9 10 25
|
eqrelrdv |
|- ( ph -> U_ j e. A ( { j } X. B ) = `' U_ k e. C ( { k } X. D ) ) |
27 |
|
nfcv |
|- F/_ x ( { j } X. B ) |
28 |
|
nfcv |
|- F/_ j { x } |
29 |
|
nfcsb1v |
|- F/_ j [_ x / j ]_ B |
30 |
28 29
|
nfxp |
|- F/_ j ( { x } X. [_ x / j ]_ B ) |
31 |
|
sneq |
|- ( j = x -> { j } = { x } ) |
32 |
|
csbeq1a |
|- ( j = x -> B = [_ x / j ]_ B ) |
33 |
31 32
|
xpeq12d |
|- ( j = x -> ( { j } X. B ) = ( { x } X. [_ x / j ]_ B ) ) |
34 |
27 30 33
|
cbviun |
|- U_ j e. A ( { j } X. B ) = U_ x e. A ( { x } X. [_ x / j ]_ B ) |
35 |
|
nfcv |
|- F/_ y ( { k } X. D ) |
36 |
|
nfcv |
|- F/_ k { y } |
37 |
|
nfcsb1v |
|- F/_ k [_ y / k ]_ D |
38 |
36 37
|
nfxp |
|- F/_ k ( { y } X. [_ y / k ]_ D ) |
39 |
|
sneq |
|- ( k = y -> { k } = { y } ) |
40 |
|
csbeq1a |
|- ( k = y -> D = [_ y / k ]_ D ) |
41 |
39 40
|
xpeq12d |
|- ( k = y -> ( { k } X. D ) = ( { y } X. [_ y / k ]_ D ) ) |
42 |
35 38 41
|
cbviun |
|- U_ k e. C ( { k } X. D ) = U_ y e. C ( { y } X. [_ y / k ]_ D ) |
43 |
42
|
cnveqi |
|- `' U_ k e. C ( { k } X. D ) = `' U_ y e. C ( { y } X. [_ y / k ]_ D ) |
44 |
26 34 43
|
3eqtr3g |
|- ( ph -> U_ x e. A ( { x } X. [_ x / j ]_ B ) = `' U_ y e. C ( { y } X. [_ y / k ]_ D ) ) |
45 |
44
|
prodeq1d |
|- ( ph -> prod_ z e. U_ x e. A ( { x } X. [_ x / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = prod_ z e. `' U_ y e. C ( { y } X. [_ y / k ]_ D ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
46 |
13 12
|
op1std |
|- ( w = <. y , x >. -> ( 1st ` w ) = y ) |
47 |
46
|
csbeq1d |
|- ( w = <. y , x >. -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ y / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
48 |
13 12
|
op2ndd |
|- ( w = <. y , x >. -> ( 2nd ` w ) = x ) |
49 |
48
|
csbeq1d |
|- ( w = <. y , x >. -> [_ ( 2nd ` w ) / j ]_ E = [_ x / j ]_ E ) |
50 |
49
|
csbeq2dv |
|- ( w = <. y , x >. -> [_ y / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
51 |
47 50
|
eqtrd |
|- ( w = <. y , x >. -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
52 |
12 13
|
op2ndd |
|- ( z = <. x , y >. -> ( 2nd ` z ) = y ) |
53 |
52
|
csbeq1d |
|- ( z = <. x , y >. -> [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ y / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
54 |
12 13
|
op1std |
|- ( z = <. x , y >. -> ( 1st ` z ) = x ) |
55 |
54
|
csbeq1d |
|- ( z = <. x , y >. -> [_ ( 1st ` z ) / j ]_ E = [_ x / j ]_ E ) |
56 |
55
|
csbeq2dv |
|- ( z = <. x , y >. -> [_ y / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
57 |
53 56
|
eqtrd |
|- ( z = <. x , y >. -> [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
58 |
|
snfi |
|- { y } e. Fin |
59 |
1
|
adantr |
|- ( ( ph /\ y e. C ) -> A e. Fin ) |
60 |
37 40
|
opeliunxp2f |
|- ( <. y , x >. e. U_ k e. C ( { k } X. D ) <-> ( y e. C /\ x e. [_ y / k ]_ D ) ) |
61 |
21 60
|
sylbbr |
|- ( ( y e. C /\ x e. [_ y / k ]_ D ) -> <. x , y >. e. `' U_ k e. C ( { k } X. D ) ) |
62 |
61
|
adantl |
|- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> <. x , y >. e. `' U_ k e. C ( { k } X. D ) ) |
63 |
26
|
adantr |
|- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> U_ j e. A ( { j } X. B ) = `' U_ k e. C ( { k } X. D ) ) |
64 |
62 63
|
eleqtrrd |
|- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> <. x , y >. e. U_ j e. A ( { j } X. B ) ) |
65 |
|
eliun |
|- ( <. x , y >. e. U_ j e. A ( { j } X. B ) <-> E. j e. A <. x , y >. e. ( { j } X. B ) ) |
66 |
64 65
|
sylib |
|- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> E. j e. A <. x , y >. e. ( { j } X. B ) ) |
67 |
|
simpr |
|- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> <. x , y >. e. ( { j } X. B ) ) |
68 |
|
opelxp |
|- ( <. x , y >. e. ( { j } X. B ) <-> ( x e. { j } /\ y e. B ) ) |
69 |
67 68
|
sylib |
|- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> ( x e. { j } /\ y e. B ) ) |
70 |
69
|
simpld |
|- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> x e. { j } ) |
71 |
|
elsni |
|- ( x e. { j } -> x = j ) |
72 |
70 71
|
syl |
|- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> x = j ) |
73 |
|
simpl |
|- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> j e. A ) |
74 |
72 73
|
eqeltrd |
|- ( ( j e. A /\ <. x , y >. e. ( { j } X. B ) ) -> x e. A ) |
75 |
74
|
rexlimiva |
|- ( E. j e. A <. x , y >. e. ( { j } X. B ) -> x e. A ) |
76 |
66 75
|
syl |
|- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> x e. A ) |
77 |
76
|
expr |
|- ( ( ph /\ y e. C ) -> ( x e. [_ y / k ]_ D -> x e. A ) ) |
78 |
77
|
ssrdv |
|- ( ( ph /\ y e. C ) -> [_ y / k ]_ D C_ A ) |
79 |
59 78
|
ssfid |
|- ( ( ph /\ y e. C ) -> [_ y / k ]_ D e. Fin ) |
80 |
|
xpfi |
|- ( ( { y } e. Fin /\ [_ y / k ]_ D e. Fin ) -> ( { y } X. [_ y / k ]_ D ) e. Fin ) |
81 |
58 79 80
|
sylancr |
|- ( ( ph /\ y e. C ) -> ( { y } X. [_ y / k ]_ D ) e. Fin ) |
82 |
81
|
ralrimiva |
|- ( ph -> A. y e. C ( { y } X. [_ y / k ]_ D ) e. Fin ) |
83 |
|
iunfi |
|- ( ( C e. Fin /\ A. y e. C ( { y } X. [_ y / k ]_ D ) e. Fin ) -> U_ y e. C ( { y } X. [_ y / k ]_ D ) e. Fin ) |
84 |
2 82 83
|
syl2anc |
|- ( ph -> U_ y e. C ( { y } X. [_ y / k ]_ D ) e. Fin ) |
85 |
|
reliun |
|- ( Rel U_ y e. C ( { y } X. [_ y / k ]_ D ) <-> A. y e. C Rel ( { y } X. [_ y / k ]_ D ) ) |
86 |
|
relxp |
|- Rel ( { y } X. [_ y / k ]_ D ) |
87 |
86
|
a1i |
|- ( y e. C -> Rel ( { y } X. [_ y / k ]_ D ) ) |
88 |
85 87
|
mprgbir |
|- Rel U_ y e. C ( { y } X. [_ y / k ]_ D ) |
89 |
88
|
a1i |
|- ( ph -> Rel U_ y e. C ( { y } X. [_ y / k ]_ D ) ) |
90 |
|
csbeq1 |
|- ( x = ( 2nd ` w ) -> [_ x / j ]_ E = [_ ( 2nd ` w ) / j ]_ E ) |
91 |
90
|
csbeq2dv |
|- ( x = ( 2nd ` w ) -> [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E = [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
92 |
91
|
eleq1d |
|- ( x = ( 2nd ` w ) -> ( [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E e. CC <-> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E e. CC ) ) |
93 |
|
csbeq1 |
|- ( y = ( 1st ` w ) -> [_ y / k ]_ D = [_ ( 1st ` w ) / k ]_ D ) |
94 |
|
csbeq1 |
|- ( y = ( 1st ` w ) -> [_ y / k ]_ [_ x / j ]_ E = [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E ) |
95 |
94
|
eleq1d |
|- ( y = ( 1st ` w ) -> ( [_ y / k ]_ [_ x / j ]_ E e. CC <-> [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E e. CC ) ) |
96 |
93 95
|
raleqbidv |
|- ( y = ( 1st ` w ) -> ( A. x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E e. CC <-> A. x e. [_ ( 1st ` w ) / k ]_ D [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E e. CC ) ) |
97 |
|
simpl |
|- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> ph ) |
98 |
29
|
nfcri |
|- F/ j y e. [_ x / j ]_ B |
99 |
71
|
equcomd |
|- ( x e. { j } -> j = x ) |
100 |
99 32
|
syl |
|- ( x e. { j } -> B = [_ x / j ]_ B ) |
101 |
100
|
eleq2d |
|- ( x e. { j } -> ( y e. B <-> y e. [_ x / j ]_ B ) ) |
102 |
101
|
biimpa |
|- ( ( x e. { j } /\ y e. B ) -> y e. [_ x / j ]_ B ) |
103 |
68 102
|
sylbi |
|- ( <. x , y >. e. ( { j } X. B ) -> y e. [_ x / j ]_ B ) |
104 |
103
|
a1i |
|- ( j e. A -> ( <. x , y >. e. ( { j } X. B ) -> y e. [_ x / j ]_ B ) ) |
105 |
98 104
|
rexlimi |
|- ( E. j e. A <. x , y >. e. ( { j } X. B ) -> y e. [_ x / j ]_ B ) |
106 |
66 105
|
syl |
|- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> y e. [_ x / j ]_ B ) |
107 |
5
|
ralrimivva |
|- ( ph -> A. j e. A A. k e. B E e. CC ) |
108 |
|
nfcsb1v |
|- F/_ j [_ x / j ]_ E |
109 |
108
|
nfel1 |
|- F/ j [_ x / j ]_ E e. CC |
110 |
29 109
|
nfralw |
|- F/ j A. k e. [_ x / j ]_ B [_ x / j ]_ E e. CC |
111 |
|
csbeq1a |
|- ( j = x -> E = [_ x / j ]_ E ) |
112 |
111
|
eleq1d |
|- ( j = x -> ( E e. CC <-> [_ x / j ]_ E e. CC ) ) |
113 |
32 112
|
raleqbidv |
|- ( j = x -> ( A. k e. B E e. CC <-> A. k e. [_ x / j ]_ B [_ x / j ]_ E e. CC ) ) |
114 |
110 113
|
rspc |
|- ( x e. A -> ( A. j e. A A. k e. B E e. CC -> A. k e. [_ x / j ]_ B [_ x / j ]_ E e. CC ) ) |
115 |
107 114
|
mpan9 |
|- ( ( ph /\ x e. A ) -> A. k e. [_ x / j ]_ B [_ x / j ]_ E e. CC ) |
116 |
|
nfcsb1v |
|- F/_ k [_ y / k ]_ [_ x / j ]_ E |
117 |
116
|
nfel1 |
|- F/ k [_ y / k ]_ [_ x / j ]_ E e. CC |
118 |
|
csbeq1a |
|- ( k = y -> [_ x / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
119 |
118
|
eleq1d |
|- ( k = y -> ( [_ x / j ]_ E e. CC <-> [_ y / k ]_ [_ x / j ]_ E e. CC ) ) |
120 |
117 119
|
rspc |
|- ( y e. [_ x / j ]_ B -> ( A. k e. [_ x / j ]_ B [_ x / j ]_ E e. CC -> [_ y / k ]_ [_ x / j ]_ E e. CC ) ) |
121 |
115 120
|
syl5com |
|- ( ( ph /\ x e. A ) -> ( y e. [_ x / j ]_ B -> [_ y / k ]_ [_ x / j ]_ E e. CC ) ) |
122 |
121
|
impr |
|- ( ( ph /\ ( x e. A /\ y e. [_ x / j ]_ B ) ) -> [_ y / k ]_ [_ x / j ]_ E e. CC ) |
123 |
97 76 106 122
|
syl12anc |
|- ( ( ph /\ ( y e. C /\ x e. [_ y / k ]_ D ) ) -> [_ y / k ]_ [_ x / j ]_ E e. CC ) |
124 |
123
|
ralrimivva |
|- ( ph -> A. y e. C A. x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E e. CC ) |
125 |
124
|
adantr |
|- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> A. y e. C A. x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E e. CC ) |
126 |
|
simpr |
|- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) |
127 |
|
eliun |
|- ( w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) <-> E. y e. C w e. ( { y } X. [_ y / k ]_ D ) ) |
128 |
126 127
|
sylib |
|- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> E. y e. C w e. ( { y } X. [_ y / k ]_ D ) ) |
129 |
|
xp1st |
|- ( w e. ( { y } X. [_ y / k ]_ D ) -> ( 1st ` w ) e. { y } ) |
130 |
129
|
adantl |
|- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> ( 1st ` w ) e. { y } ) |
131 |
|
elsni |
|- ( ( 1st ` w ) e. { y } -> ( 1st ` w ) = y ) |
132 |
130 131
|
syl |
|- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> ( 1st ` w ) = y ) |
133 |
|
simpl |
|- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> y e. C ) |
134 |
132 133
|
eqeltrd |
|- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> ( 1st ` w ) e. C ) |
135 |
134
|
rexlimiva |
|- ( E. y e. C w e. ( { y } X. [_ y / k ]_ D ) -> ( 1st ` w ) e. C ) |
136 |
128 135
|
syl |
|- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> ( 1st ` w ) e. C ) |
137 |
96 125 136
|
rspcdva |
|- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> A. x e. [_ ( 1st ` w ) / k ]_ D [_ ( 1st ` w ) / k ]_ [_ x / j ]_ E e. CC ) |
138 |
|
xp2nd |
|- ( w e. ( { y } X. [_ y / k ]_ D ) -> ( 2nd ` w ) e. [_ y / k ]_ D ) |
139 |
138
|
adantl |
|- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> ( 2nd ` w ) e. [_ y / k ]_ D ) |
140 |
132
|
csbeq1d |
|- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> [_ ( 1st ` w ) / k ]_ D = [_ y / k ]_ D ) |
141 |
139 140
|
eleqtrrd |
|- ( ( y e. C /\ w e. ( { y } X. [_ y / k ]_ D ) ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
142 |
141
|
rexlimiva |
|- ( E. y e. C w e. ( { y } X. [_ y / k ]_ D ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
143 |
128 142
|
syl |
|- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> ( 2nd ` w ) e. [_ ( 1st ` w ) / k ]_ D ) |
144 |
92 137 143
|
rspcdva |
|- ( ( ph /\ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) ) -> [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E e. CC ) |
145 |
51 57 84 89 144
|
fprodcnv |
|- ( ph -> prod_ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E = prod_ z e. `' U_ y e. C ( { y } X. [_ y / k ]_ D ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
146 |
45 145
|
eqtr4d |
|- ( ph -> prod_ z e. U_ x e. A ( { x } X. [_ x / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E = prod_ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
147 |
3
|
ralrimiva |
|- ( ph -> A. j e. A B e. Fin ) |
148 |
29
|
nfel1 |
|- F/ j [_ x / j ]_ B e. Fin |
149 |
32
|
eleq1d |
|- ( j = x -> ( B e. Fin <-> [_ x / j ]_ B e. Fin ) ) |
150 |
148 149
|
rspc |
|- ( x e. A -> ( A. j e. A B e. Fin -> [_ x / j ]_ B e. Fin ) ) |
151 |
147 150
|
mpan9 |
|- ( ( ph /\ x e. A ) -> [_ x / j ]_ B e. Fin ) |
152 |
57 1 151 122
|
fprod2d |
|- ( ph -> prod_ x e. A prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E = prod_ z e. U_ x e. A ( { x } X. [_ x / j ]_ B ) [_ ( 2nd ` z ) / k ]_ [_ ( 1st ` z ) / j ]_ E ) |
153 |
51 2 79 123
|
fprod2d |
|- ( ph -> prod_ y e. C prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E = prod_ w e. U_ y e. C ( { y } X. [_ y / k ]_ D ) [_ ( 1st ` w ) / k ]_ [_ ( 2nd ` w ) / j ]_ E ) |
154 |
146 152 153
|
3eqtr4d |
|- ( ph -> prod_ x e. A prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E = prod_ y e. C prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E ) |
155 |
|
nfcv |
|- F/_ x prod_ k e. B E |
156 |
|
nfcv |
|- F/_ j y |
157 |
156 108
|
nfcsbw |
|- F/_ j [_ y / k ]_ [_ x / j ]_ E |
158 |
29 157
|
nfcprod |
|- F/_ j prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E |
159 |
|
nfcv |
|- F/_ y E |
160 |
|
nfcsb1v |
|- F/_ k [_ y / k ]_ E |
161 |
|
csbeq1a |
|- ( k = y -> E = [_ y / k ]_ E ) |
162 |
159 160 161
|
cbvprodi |
|- prod_ k e. B E = prod_ y e. B [_ y / k ]_ E |
163 |
111
|
csbeq2dv |
|- ( j = x -> [_ y / k ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
164 |
163
|
adantr |
|- ( ( j = x /\ y e. B ) -> [_ y / k ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
165 |
32 164
|
prodeq12dv |
|- ( j = x -> prod_ y e. B [_ y / k ]_ E = prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E ) |
166 |
162 165
|
eqtrid |
|- ( j = x -> prod_ k e. B E = prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E ) |
167 |
155 158 166
|
cbvprodi |
|- prod_ j e. A prod_ k e. B E = prod_ x e. A prod_ y e. [_ x / j ]_ B [_ y / k ]_ [_ x / j ]_ E |
168 |
|
nfcv |
|- F/_ y prod_ j e. D E |
169 |
37 116
|
nfcprod |
|- F/_ k prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E |
170 |
|
nfcv |
|- F/_ x E |
171 |
170 108 111
|
cbvprodi |
|- prod_ j e. D E = prod_ x e. D [_ x / j ]_ E |
172 |
118
|
adantr |
|- ( ( k = y /\ x e. D ) -> [_ x / j ]_ E = [_ y / k ]_ [_ x / j ]_ E ) |
173 |
40 172
|
prodeq12dv |
|- ( k = y -> prod_ x e. D [_ x / j ]_ E = prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E ) |
174 |
171 173
|
eqtrid |
|- ( k = y -> prod_ j e. D E = prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E ) |
175 |
168 169 174
|
cbvprodi |
|- prod_ k e. C prod_ j e. D E = prod_ y e. C prod_ x e. [_ y / k ]_ D [_ y / k ]_ [_ x / j ]_ E |
176 |
154 167 175
|
3eqtr4g |
|- ( ph -> prod_ j e. A prod_ k e. B E = prod_ k e. C prod_ j e. D E ) |