Step |
Hyp |
Ref |
Expression |
1 |
|
fproddivf.kph |
|- F/ k ph |
2 |
|
fproddivf.a |
|- ( ph -> A e. Fin ) |
3 |
|
fproddivf.b |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
4 |
|
fproddivf.c |
|- ( ( ph /\ k e. A ) -> C e. CC ) |
5 |
|
fproddivf.ne0 |
|- ( ( ph /\ k e. A ) -> C =/= 0 ) |
6 |
|
nfcv |
|- F/_ j ( B / C ) |
7 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ B |
8 |
|
nfcv |
|- F/_ k / |
9 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ C |
10 |
7 8 9
|
nfov |
|- F/_ k ( [_ j / k ]_ B / [_ j / k ]_ C ) |
11 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
12 |
|
csbeq1a |
|- ( k = j -> C = [_ j / k ]_ C ) |
13 |
11 12
|
oveq12d |
|- ( k = j -> ( B / C ) = ( [_ j / k ]_ B / [_ j / k ]_ C ) ) |
14 |
6 10 13
|
cbvprodi |
|- prod_ k e. A ( B / C ) = prod_ j e. A ( [_ j / k ]_ B / [_ j / k ]_ C ) |
15 |
14
|
a1i |
|- ( ph -> prod_ k e. A ( B / C ) = prod_ j e. A ( [_ j / k ]_ B / [_ j / k ]_ C ) ) |
16 |
|
nfvd |
|- ( ph -> F/ k j e. A ) |
17 |
1 16
|
nfan1 |
|- F/ k ( ph /\ j e. A ) |
18 |
7
|
nfel1 |
|- F/ k [_ j / k ]_ B e. CC |
19 |
17 18
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) |
20 |
|
eleq1w |
|- ( k = j -> ( k e. A <-> j e. A ) ) |
21 |
20
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) |
22 |
11
|
eleq1d |
|- ( k = j -> ( B e. CC <-> [_ j / k ]_ B e. CC ) ) |
23 |
21 22
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) ) ) |
24 |
19 23 3
|
chvarfv |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) |
25 |
9
|
nfel1 |
|- F/ k [_ j / k ]_ C e. CC |
26 |
17 25
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ C e. CC ) |
27 |
12
|
eleq1d |
|- ( k = j -> ( C e. CC <-> [_ j / k ]_ C e. CC ) ) |
28 |
21 27
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> C e. CC ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ C e. CC ) ) ) |
29 |
26 28 4
|
chvarfv |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ C e. CC ) |
30 |
|
nfcv |
|- F/_ k 0 |
31 |
9 30
|
nfne |
|- F/ k [_ j / k ]_ C =/= 0 |
32 |
17 31
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ C =/= 0 ) |
33 |
12
|
neeq1d |
|- ( k = j -> ( C =/= 0 <-> [_ j / k ]_ C =/= 0 ) ) |
34 |
21 33
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> C =/= 0 ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ C =/= 0 ) ) ) |
35 |
32 34 5
|
chvarfv |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ C =/= 0 ) |
36 |
2 24 29 35
|
fproddiv |
|- ( ph -> prod_ j e. A ( [_ j / k ]_ B / [_ j / k ]_ C ) = ( prod_ j e. A [_ j / k ]_ B / prod_ j e. A [_ j / k ]_ C ) ) |
37 |
|
nfcv |
|- F/_ j B |
38 |
37 7 11
|
cbvprodi |
|- prod_ k e. A B = prod_ j e. A [_ j / k ]_ B |
39 |
38
|
eqcomi |
|- prod_ j e. A [_ j / k ]_ B = prod_ k e. A B |
40 |
39
|
a1i |
|- ( ph -> prod_ j e. A [_ j / k ]_ B = prod_ k e. A B ) |
41 |
|
nfcv |
|- F/_ j C |
42 |
12
|
equcoms |
|- ( j = k -> C = [_ j / k ]_ C ) |
43 |
42
|
eqcomd |
|- ( j = k -> [_ j / k ]_ C = C ) |
44 |
9 41 43
|
cbvprodi |
|- prod_ j e. A [_ j / k ]_ C = prod_ k e. A C |
45 |
44
|
a1i |
|- ( ph -> prod_ j e. A [_ j / k ]_ C = prod_ k e. A C ) |
46 |
40 45
|
oveq12d |
|- ( ph -> ( prod_ j e. A [_ j / k ]_ B / prod_ j e. A [_ j / k ]_ C ) = ( prod_ k e. A B / prod_ k e. A C ) ) |
47 |
15 36 46
|
3eqtrd |
|- ( ph -> prod_ k e. A ( B / C ) = ( prod_ k e. A B / prod_ k e. A C ) ) |