Metamath Proof Explorer


Theorem fprodeq02

Description: If one of the factors is zero the product is zero. (Contributed by Thierry Arnoux, 11-Dec-2021)

Ref Expression
Hypotheses fprodeq02.1
|- ( k = K -> B = C )
fprodeq02.a
|- ( ph -> A e. Fin )
fprodeq02.b
|- ( ( ph /\ k e. A ) -> B e. CC )
fprodeq02.k
|- ( ph -> K e. A )
fprodeq02.c
|- ( ph -> C = 0 )
Assertion fprodeq02
|- ( ph -> prod_ k e. A B = 0 )

Proof

Step Hyp Ref Expression
1 fprodeq02.1
 |-  ( k = K -> B = C )
2 fprodeq02.a
 |-  ( ph -> A e. Fin )
3 fprodeq02.b
 |-  ( ( ph /\ k e. A ) -> B e. CC )
4 fprodeq02.k
 |-  ( ph -> K e. A )
5 fprodeq02.c
 |-  ( ph -> C = 0 )
6 disjdif
 |-  ( { K } i^i ( A \ { K } ) ) = (/)
7 6 a1i
 |-  ( ph -> ( { K } i^i ( A \ { K } ) ) = (/) )
8 4 snssd
 |-  ( ph -> { K } C_ A )
9 undif
 |-  ( { K } C_ A <-> ( { K } u. ( A \ { K } ) ) = A )
10 8 9 sylib
 |-  ( ph -> ( { K } u. ( A \ { K } ) ) = A )
11 10 eqcomd
 |-  ( ph -> A = ( { K } u. ( A \ { K } ) ) )
12 7 11 2 3 fprodsplit
 |-  ( ph -> prod_ k e. A B = ( prod_ k e. { K } B x. prod_ k e. ( A \ { K } ) B ) )
13 0cnd
 |-  ( ph -> 0 e. CC )
14 5 13 eqeltrd
 |-  ( ph -> C e. CC )
15 1 prodsn
 |-  ( ( K e. A /\ C e. CC ) -> prod_ k e. { K } B = C )
16 4 14 15 syl2anc
 |-  ( ph -> prod_ k e. { K } B = C )
17 16 5 eqtrd
 |-  ( ph -> prod_ k e. { K } B = 0 )
18 17 oveq1d
 |-  ( ph -> ( prod_ k e. { K } B x. prod_ k e. ( A \ { K } ) B ) = ( 0 x. prod_ k e. ( A \ { K } ) B ) )
19 diffi
 |-  ( A e. Fin -> ( A \ { K } ) e. Fin )
20 2 19 syl
 |-  ( ph -> ( A \ { K } ) e. Fin )
21 difssd
 |-  ( ph -> ( A \ { K } ) C_ A )
22 21 sselda
 |-  ( ( ph /\ k e. ( A \ { K } ) ) -> k e. A )
23 22 3 syldan
 |-  ( ( ph /\ k e. ( A \ { K } ) ) -> B e. CC )
24 20 23 fprodcl
 |-  ( ph -> prod_ k e. ( A \ { K } ) B e. CC )
25 24 mul02d
 |-  ( ph -> ( 0 x. prod_ k e. ( A \ { K } ) B ) = 0 )
26 12 18 25 3eqtrd
 |-  ( ph -> prod_ k e. A B = 0 )