| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodeq0g.kph |  |-  F/ k ph | 
						
							| 2 |  | fprodeq0g.a |  |-  ( ph -> A e. Fin ) | 
						
							| 3 |  | fprodeq0g.b |  |-  ( ( ph /\ k e. A ) -> B e. CC ) | 
						
							| 4 |  | fprodeq0g.c |  |-  ( ph -> C e. A ) | 
						
							| 5 |  | fprodeq0g.b0 |  |-  ( ( ph /\ k = C ) -> B = 0 ) | 
						
							| 6 |  | nfcvd |  |-  ( ph -> F/_ k 0 ) | 
						
							| 7 | 1 6 2 3 4 5 | fprodsplit1f |  |-  ( ph -> prod_ k e. A B = ( 0 x. prod_ k e. ( A \ { C } ) B ) ) | 
						
							| 8 |  | diffi |  |-  ( A e. Fin -> ( A \ { C } ) e. Fin ) | 
						
							| 9 | 2 8 | syl |  |-  ( ph -> ( A \ { C } ) e. Fin ) | 
						
							| 10 |  | eldifi |  |-  ( k e. ( A \ { C } ) -> k e. A ) | 
						
							| 11 | 10 3 | sylan2 |  |-  ( ( ph /\ k e. ( A \ { C } ) ) -> B e. CC ) | 
						
							| 12 | 1 9 11 | fprodclf |  |-  ( ph -> prod_ k e. ( A \ { C } ) B e. CC ) | 
						
							| 13 | 12 | mul02d |  |-  ( ph -> ( 0 x. prod_ k e. ( A \ { C } ) B ) = 0 ) | 
						
							| 14 | 7 13 | eqtrd |  |-  ( ph -> prod_ k e. A B = 0 ) |