Step |
Hyp |
Ref |
Expression |
1 |
|
fprodeq0g.kph |
|- F/ k ph |
2 |
|
fprodeq0g.a |
|- ( ph -> A e. Fin ) |
3 |
|
fprodeq0g.b |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
4 |
|
fprodeq0g.c |
|- ( ph -> C e. A ) |
5 |
|
fprodeq0g.b0 |
|- ( ( ph /\ k = C ) -> B = 0 ) |
6 |
|
nfcvd |
|- ( ph -> F/_ k 0 ) |
7 |
1 6 2 3 4 5
|
fprodsplit1f |
|- ( ph -> prod_ k e. A B = ( 0 x. prod_ k e. ( A \ { C } ) B ) ) |
8 |
|
diffi |
|- ( A e. Fin -> ( A \ { C } ) e. Fin ) |
9 |
2 8
|
syl |
|- ( ph -> ( A \ { C } ) e. Fin ) |
10 |
|
eldifi |
|- ( k e. ( A \ { C } ) -> k e. A ) |
11 |
10 3
|
sylan2 |
|- ( ( ph /\ k e. ( A \ { C } ) ) -> B e. CC ) |
12 |
1 9 11
|
fprodclf |
|- ( ph -> prod_ k e. ( A \ { C } ) B e. CC ) |
13 |
12
|
mul02d |
|- ( ph -> ( 0 x. prod_ k e. ( A \ { C } ) B ) = 0 ) |
14 |
7 13
|
eqtrd |
|- ( ph -> prod_ k e. A B = 0 ) |