| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodge0.kph |  |-  F/ k ph | 
						
							| 2 |  | fprodge0.a |  |-  ( ph -> A e. Fin ) | 
						
							| 3 |  | fprodge0.b |  |-  ( ( ph /\ k e. A ) -> B e. RR ) | 
						
							| 4 |  | fprodge0.0leb |  |-  ( ( ph /\ k e. A ) -> 0 <_ B ) | 
						
							| 5 |  | 0xr |  |-  0 e. RR* | 
						
							| 6 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 7 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 8 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 9 | 7 8 | sstri |  |-  ( 0 [,) +oo ) C_ CC | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( 0 [,) +oo ) C_ CC ) | 
						
							| 11 |  | ge0mulcl |  |-  ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x x. y ) e. ( 0 [,) +oo ) ) | 
						
							| 13 |  | elrege0 |  |-  ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) | 
						
							| 14 | 3 4 13 | sylanbrc |  |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 15 |  | 1re |  |-  1 e. RR | 
						
							| 16 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 17 |  | ltpnf |  |-  ( 1 e. RR -> 1 < +oo ) | 
						
							| 18 | 15 17 | ax-mp |  |-  1 < +oo | 
						
							| 19 |  | 0re |  |-  0 e. RR | 
						
							| 20 |  | elico2 |  |-  ( ( 0 e. RR /\ +oo e. RR* ) -> ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) ) ) | 
						
							| 21 | 19 6 20 | mp2an |  |-  ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) ) | 
						
							| 22 | 15 16 18 21 | mpbir3an |  |-  1 e. ( 0 [,) +oo ) | 
						
							| 23 | 22 | a1i |  |-  ( ph -> 1 e. ( 0 [,) +oo ) ) | 
						
							| 24 | 1 10 12 2 14 23 | fprodcllemf |  |-  ( ph -> prod_ k e. A B e. ( 0 [,) +oo ) ) | 
						
							| 25 |  | icogelb |  |-  ( ( 0 e. RR* /\ +oo e. RR* /\ prod_ k e. A B e. ( 0 [,) +oo ) ) -> 0 <_ prod_ k e. A B ) | 
						
							| 26 | 5 6 24 25 | mp3an12i |  |-  ( ph -> 0 <_ prod_ k e. A B ) |