Metamath Proof Explorer


Theorem fprodge0

Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodge0.kph
|- F/ k ph
fprodge0.a
|- ( ph -> A e. Fin )
fprodge0.b
|- ( ( ph /\ k e. A ) -> B e. RR )
fprodge0.0leb
|- ( ( ph /\ k e. A ) -> 0 <_ B )
Assertion fprodge0
|- ( ph -> 0 <_ prod_ k e. A B )

Proof

Step Hyp Ref Expression
1 fprodge0.kph
 |-  F/ k ph
2 fprodge0.a
 |-  ( ph -> A e. Fin )
3 fprodge0.b
 |-  ( ( ph /\ k e. A ) -> B e. RR )
4 fprodge0.0leb
 |-  ( ( ph /\ k e. A ) -> 0 <_ B )
5 0xr
 |-  0 e. RR*
6 pnfxr
 |-  +oo e. RR*
7 rge0ssre
 |-  ( 0 [,) +oo ) C_ RR
8 ax-resscn
 |-  RR C_ CC
9 7 8 sstri
 |-  ( 0 [,) +oo ) C_ CC
10 9 a1i
 |-  ( ph -> ( 0 [,) +oo ) C_ CC )
11 ge0mulcl
 |-  ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x x. y ) e. ( 0 [,) +oo ) )
12 11 adantl
 |-  ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x x. y ) e. ( 0 [,) +oo ) )
13 elrege0
 |-  ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) )
14 3 4 13 sylanbrc
 |-  ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) )
15 1re
 |-  1 e. RR
16 0le1
 |-  0 <_ 1
17 ltpnf
 |-  ( 1 e. RR -> 1 < +oo )
18 15 17 ax-mp
 |-  1 < +oo
19 0re
 |-  0 e. RR
20 elico2
 |-  ( ( 0 e. RR /\ +oo e. RR* ) -> ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) ) )
21 19 6 20 mp2an
 |-  ( 1 e. ( 0 [,) +oo ) <-> ( 1 e. RR /\ 0 <_ 1 /\ 1 < +oo ) )
22 15 16 18 21 mpbir3an
 |-  1 e. ( 0 [,) +oo )
23 22 a1i
 |-  ( ph -> 1 e. ( 0 [,) +oo ) )
24 1 10 12 2 14 23 fprodcllemf
 |-  ( ph -> prod_ k e. A B e. ( 0 [,) +oo ) )
25 icogelb
 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ prod_ k e. A B e. ( 0 [,) +oo ) ) -> 0 <_ prod_ k e. A B )
26 5 6 24 25 mp3an12i
 |-  ( ph -> 0 <_ prod_ k e. A B )