| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodge1.ph |  |-  F/ k ph | 
						
							| 2 |  | fprodge1.a |  |-  ( ph -> A e. Fin ) | 
						
							| 3 |  | fprodge1.b |  |-  ( ( ph /\ k e. A ) -> B e. RR ) | 
						
							| 4 |  | fprodge1.ge |  |-  ( ( ph /\ k e. A ) -> 1 <_ B ) | 
						
							| 5 |  | 1xr |  |-  1 e. RR* | 
						
							| 6 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 7 |  | 1re |  |-  1 e. RR | 
						
							| 8 |  | icossre |  |-  ( ( 1 e. RR /\ +oo e. RR* ) -> ( 1 [,) +oo ) C_ RR ) | 
						
							| 9 | 7 6 8 | mp2an |  |-  ( 1 [,) +oo ) C_ RR | 
						
							| 10 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 11 | 9 10 | sstri |  |-  ( 1 [,) +oo ) C_ CC | 
						
							| 12 | 11 | a1i |  |-  ( ph -> ( 1 [,) +oo ) C_ CC ) | 
						
							| 13 | 5 | a1i |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 e. RR* ) | 
						
							| 14 | 6 | a1i |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> +oo e. RR* ) | 
						
							| 15 | 9 | sseli |  |-  ( x e. ( 1 [,) +oo ) -> x e. RR ) | 
						
							| 16 | 15 | adantr |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> x e. RR ) | 
						
							| 17 | 9 | sseli |  |-  ( y e. ( 1 [,) +oo ) -> y e. RR ) | 
						
							| 18 | 17 | adantl |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> y e. RR ) | 
						
							| 19 | 16 18 | remulcld |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) e. RR ) | 
						
							| 20 | 19 | rexrd |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) e. RR* ) | 
						
							| 21 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 22 | 7 | a1i |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 e. RR ) | 
						
							| 23 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 24 | 23 | a1i |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 0 <_ 1 ) | 
						
							| 25 |  | icogelb |  |-  ( ( 1 e. RR* /\ +oo e. RR* /\ x e. ( 1 [,) +oo ) ) -> 1 <_ x ) | 
						
							| 26 | 5 6 25 | mp3an12 |  |-  ( x e. ( 1 [,) +oo ) -> 1 <_ x ) | 
						
							| 27 | 26 | adantr |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 <_ x ) | 
						
							| 28 |  | icogelb |  |-  ( ( 1 e. RR* /\ +oo e. RR* /\ y e. ( 1 [,) +oo ) ) -> 1 <_ y ) | 
						
							| 29 | 5 6 28 | mp3an12 |  |-  ( y e. ( 1 [,) +oo ) -> 1 <_ y ) | 
						
							| 30 | 29 | adantl |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 <_ y ) | 
						
							| 31 | 22 16 22 18 24 24 27 30 | lemul12ad |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( 1 x. 1 ) <_ ( x x. y ) ) | 
						
							| 32 | 21 31 | eqbrtrrid |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 <_ ( x x. y ) ) | 
						
							| 33 | 19 | ltpnfd |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) < +oo ) | 
						
							| 34 | 13 14 20 32 33 | elicod |  |-  ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) e. ( 1 [,) +oo ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ph /\ ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) ) -> ( x x. y ) e. ( 1 [,) +oo ) ) | 
						
							| 36 | 5 | a1i |  |-  ( ( ph /\ k e. A ) -> 1 e. RR* ) | 
						
							| 37 | 6 | a1i |  |-  ( ( ph /\ k e. A ) -> +oo e. RR* ) | 
						
							| 38 | 3 | rexrd |  |-  ( ( ph /\ k e. A ) -> B e. RR* ) | 
						
							| 39 | 3 | ltpnfd |  |-  ( ( ph /\ k e. A ) -> B < +oo ) | 
						
							| 40 | 36 37 38 4 39 | elicod |  |-  ( ( ph /\ k e. A ) -> B e. ( 1 [,) +oo ) ) | 
						
							| 41 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 42 |  | ltpnf |  |-  ( 1 e. RR -> 1 < +oo ) | 
						
							| 43 | 7 42 | ax-mp |  |-  1 < +oo | 
						
							| 44 |  | elico2 |  |-  ( ( 1 e. RR /\ +oo e. RR* ) -> ( 1 e. ( 1 [,) +oo ) <-> ( 1 e. RR /\ 1 <_ 1 /\ 1 < +oo ) ) ) | 
						
							| 45 | 7 6 44 | mp2an |  |-  ( 1 e. ( 1 [,) +oo ) <-> ( 1 e. RR /\ 1 <_ 1 /\ 1 < +oo ) ) | 
						
							| 46 | 7 41 43 45 | mpbir3an |  |-  1 e. ( 1 [,) +oo ) | 
						
							| 47 | 46 | a1i |  |-  ( ph -> 1 e. ( 1 [,) +oo ) ) | 
						
							| 48 | 1 12 35 2 40 47 | fprodcllemf |  |-  ( ph -> prod_ k e. A B e. ( 1 [,) +oo ) ) | 
						
							| 49 |  | icogelb |  |-  ( ( 1 e. RR* /\ +oo e. RR* /\ prod_ k e. A B e. ( 1 [,) +oo ) ) -> 1 <_ prod_ k e. A B ) | 
						
							| 50 | 5 6 48 49 | mp3an12i |  |-  ( ph -> 1 <_ prod_ k e. A B ) |