Step |
Hyp |
Ref |
Expression |
1 |
|
fprodge1.ph |
|- F/ k ph |
2 |
|
fprodge1.a |
|- ( ph -> A e. Fin ) |
3 |
|
fprodge1.b |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
4 |
|
fprodge1.ge |
|- ( ( ph /\ k e. A ) -> 1 <_ B ) |
5 |
|
1xr |
|- 1 e. RR* |
6 |
|
pnfxr |
|- +oo e. RR* |
7 |
|
1re |
|- 1 e. RR |
8 |
|
icossre |
|- ( ( 1 e. RR /\ +oo e. RR* ) -> ( 1 [,) +oo ) C_ RR ) |
9 |
7 6 8
|
mp2an |
|- ( 1 [,) +oo ) C_ RR |
10 |
|
ax-resscn |
|- RR C_ CC |
11 |
9 10
|
sstri |
|- ( 1 [,) +oo ) C_ CC |
12 |
11
|
a1i |
|- ( ph -> ( 1 [,) +oo ) C_ CC ) |
13 |
5
|
a1i |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 e. RR* ) |
14 |
6
|
a1i |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> +oo e. RR* ) |
15 |
9
|
sseli |
|- ( x e. ( 1 [,) +oo ) -> x e. RR ) |
16 |
15
|
adantr |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> x e. RR ) |
17 |
9
|
sseli |
|- ( y e. ( 1 [,) +oo ) -> y e. RR ) |
18 |
17
|
adantl |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> y e. RR ) |
19 |
16 18
|
remulcld |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) e. RR ) |
20 |
19
|
rexrd |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) e. RR* ) |
21 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
22 |
7
|
a1i |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 e. RR ) |
23 |
|
0le1 |
|- 0 <_ 1 |
24 |
23
|
a1i |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 0 <_ 1 ) |
25 |
|
icogelb |
|- ( ( 1 e. RR* /\ +oo e. RR* /\ x e. ( 1 [,) +oo ) ) -> 1 <_ x ) |
26 |
5 6 25
|
mp3an12 |
|- ( x e. ( 1 [,) +oo ) -> 1 <_ x ) |
27 |
26
|
adantr |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 <_ x ) |
28 |
|
icogelb |
|- ( ( 1 e. RR* /\ +oo e. RR* /\ y e. ( 1 [,) +oo ) ) -> 1 <_ y ) |
29 |
5 6 28
|
mp3an12 |
|- ( y e. ( 1 [,) +oo ) -> 1 <_ y ) |
30 |
29
|
adantl |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 <_ y ) |
31 |
22 16 22 18 24 24 27 30
|
lemul12ad |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( 1 x. 1 ) <_ ( x x. y ) ) |
32 |
21 31
|
eqbrtrrid |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> 1 <_ ( x x. y ) ) |
33 |
19
|
ltpnfd |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) < +oo ) |
34 |
13 14 20 32 33
|
elicod |
|- ( ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) -> ( x x. y ) e. ( 1 [,) +oo ) ) |
35 |
34
|
adantl |
|- ( ( ph /\ ( x e. ( 1 [,) +oo ) /\ y e. ( 1 [,) +oo ) ) ) -> ( x x. y ) e. ( 1 [,) +oo ) ) |
36 |
5
|
a1i |
|- ( ( ph /\ k e. A ) -> 1 e. RR* ) |
37 |
6
|
a1i |
|- ( ( ph /\ k e. A ) -> +oo e. RR* ) |
38 |
3
|
rexrd |
|- ( ( ph /\ k e. A ) -> B e. RR* ) |
39 |
3
|
ltpnfd |
|- ( ( ph /\ k e. A ) -> B < +oo ) |
40 |
36 37 38 4 39
|
elicod |
|- ( ( ph /\ k e. A ) -> B e. ( 1 [,) +oo ) ) |
41 |
|
1le1 |
|- 1 <_ 1 |
42 |
|
ltpnf |
|- ( 1 e. RR -> 1 < +oo ) |
43 |
7 42
|
ax-mp |
|- 1 < +oo |
44 |
|
elico2 |
|- ( ( 1 e. RR /\ +oo e. RR* ) -> ( 1 e. ( 1 [,) +oo ) <-> ( 1 e. RR /\ 1 <_ 1 /\ 1 < +oo ) ) ) |
45 |
7 6 44
|
mp2an |
|- ( 1 e. ( 1 [,) +oo ) <-> ( 1 e. RR /\ 1 <_ 1 /\ 1 < +oo ) ) |
46 |
7 41 43 45
|
mpbir3an |
|- 1 e. ( 1 [,) +oo ) |
47 |
46
|
a1i |
|- ( ph -> 1 e. ( 1 [,) +oo ) ) |
48 |
1 12 35 2 40 47
|
fprodcllemf |
|- ( ph -> prod_ k e. A B e. ( 1 [,) +oo ) ) |
49 |
|
icogelb |
|- ( ( 1 e. RR* /\ +oo e. RR* /\ prod_ k e. A B e. ( 1 [,) +oo ) ) -> 1 <_ prod_ k e. A B ) |
50 |
5 6 48 49
|
mp3an12i |
|- ( ph -> 1 <_ prod_ k e. A B ) |