| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodle.kph |  |-  F/ k ph | 
						
							| 2 |  | fprodle.a |  |-  ( ph -> A e. Fin ) | 
						
							| 3 |  | fprodle.b |  |-  ( ( ph /\ k e. A ) -> B e. RR ) | 
						
							| 4 |  | fprodle.0l3b |  |-  ( ( ph /\ k e. A ) -> 0 <_ B ) | 
						
							| 5 |  | fprodle.c |  |-  ( ( ph /\ k e. A ) -> C e. RR ) | 
						
							| 6 |  | fprodle.blec |  |-  ( ( ph /\ k e. A ) -> B <_ C ) | 
						
							| 7 |  | 1red |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> 1 e. RR ) | 
						
							| 8 |  | nfra1 |  |-  F/ k A. k e. A B =/= 0 | 
						
							| 9 | 1 8 | nfan |  |-  F/ k ( ph /\ A. k e. A B =/= 0 ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> A e. Fin ) | 
						
							| 11 | 5 | adantlr |  |-  ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> C e. RR ) | 
						
							| 12 | 3 | adantlr |  |-  ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> B e. RR ) | 
						
							| 13 |  | rspa |  |-  ( ( A. k e. A B =/= 0 /\ k e. A ) -> B =/= 0 ) | 
						
							| 14 | 13 | adantll |  |-  ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> B =/= 0 ) | 
						
							| 15 | 11 12 14 | redivcld |  |-  ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> ( C / B ) e. RR ) | 
						
							| 16 | 9 10 15 | fprodreclf |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A ( C / B ) e. RR ) | 
						
							| 17 | 1 2 3 | fprodreclf |  |-  ( ph -> prod_ k e. A B e. RR ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A B e. RR ) | 
						
							| 19 | 1 2 3 4 | fprodge0 |  |-  ( ph -> 0 <_ prod_ k e. A B ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> 0 <_ prod_ k e. A B ) | 
						
							| 21 | 4 | adantlr |  |-  ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> 0 <_ B ) | 
						
							| 22 | 12 21 14 | ne0gt0d |  |-  ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> 0 < B ) | 
						
							| 23 | 12 22 | elrpd |  |-  ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> B e. RR+ ) | 
						
							| 24 | 6 | adantlr |  |-  ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> B <_ C ) | 
						
							| 25 |  | divge1 |  |-  ( ( B e. RR+ /\ C e. RR /\ B <_ C ) -> 1 <_ ( C / B ) ) | 
						
							| 26 | 23 11 24 25 | syl3anc |  |-  ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> 1 <_ ( C / B ) ) | 
						
							| 27 | 9 10 15 26 | fprodge1 |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> 1 <_ prod_ k e. A ( C / B ) ) | 
						
							| 28 | 7 16 18 20 27 | lemul2ad |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> ( prod_ k e. A B x. 1 ) <_ ( prod_ k e. A B x. prod_ k e. A ( C / B ) ) ) | 
						
							| 29 | 3 | recnd |  |-  ( ( ph /\ k e. A ) -> B e. CC ) | 
						
							| 30 | 1 2 29 | fprodclf |  |-  ( ph -> prod_ k e. A B e. CC ) | 
						
							| 31 | 30 | mulridd |  |-  ( ph -> ( prod_ k e. A B x. 1 ) = prod_ k e. A B ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> ( prod_ k e. A B x. 1 ) = prod_ k e. A B ) | 
						
							| 33 | 5 | recnd |  |-  ( ( ph /\ k e. A ) -> C e. CC ) | 
						
							| 34 | 33 | adantlr |  |-  ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> C e. CC ) | 
						
							| 35 | 29 | adantlr |  |-  ( ( ( ph /\ A. k e. A B =/= 0 ) /\ k e. A ) -> B e. CC ) | 
						
							| 36 | 9 10 34 35 14 | fproddivf |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A ( C / B ) = ( prod_ k e. A C / prod_ k e. A B ) ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> ( prod_ k e. A B x. prod_ k e. A ( C / B ) ) = ( prod_ k e. A B x. ( prod_ k e. A C / prod_ k e. A B ) ) ) | 
						
							| 38 | 1 2 33 | fprodclf |  |-  ( ph -> prod_ k e. A C e. CC ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A C e. CC ) | 
						
							| 40 | 30 | adantr |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A B e. CC ) | 
						
							| 41 | 9 10 35 14 | fprodn0f |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A B =/= 0 ) | 
						
							| 42 | 39 40 41 | divcan2d |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> ( prod_ k e. A B x. ( prod_ k e. A C / prod_ k e. A B ) ) = prod_ k e. A C ) | 
						
							| 43 | 37 42 | eqtrd |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> ( prod_ k e. A B x. prod_ k e. A ( C / B ) ) = prod_ k e. A C ) | 
						
							| 44 | 28 32 43 | 3brtr3d |  |-  ( ( ph /\ A. k e. A B =/= 0 ) -> prod_ k e. A B <_ prod_ k e. A C ) | 
						
							| 45 |  | nne |  |-  ( -. B =/= 0 <-> B = 0 ) | 
						
							| 46 | 45 | rexbii |  |-  ( E. k e. A -. B =/= 0 <-> E. k e. A B = 0 ) | 
						
							| 47 |  | rexnal |  |-  ( E. k e. A -. B =/= 0 <-> -. A. k e. A B =/= 0 ) | 
						
							| 48 |  | nfv |  |-  F/ j B = 0 | 
						
							| 49 |  | nfcsb1v |  |-  F/_ k [_ j / k ]_ B | 
						
							| 50 | 49 | nfeq1 |  |-  F/ k [_ j / k ]_ B = 0 | 
						
							| 51 |  | csbeq1a |  |-  ( k = j -> B = [_ j / k ]_ B ) | 
						
							| 52 | 51 | eqeq1d |  |-  ( k = j -> ( B = 0 <-> [_ j / k ]_ B = 0 ) ) | 
						
							| 53 | 48 50 52 | cbvrexw |  |-  ( E. k e. A B = 0 <-> E. j e. A [_ j / k ]_ B = 0 ) | 
						
							| 54 | 46 47 53 | 3bitr3i |  |-  ( -. A. k e. A B =/= 0 <-> E. j e. A [_ j / k ]_ B = 0 ) | 
						
							| 55 |  | nfv |  |-  F/ k j e. A | 
						
							| 56 | 1 55 50 | nf3an |  |-  F/ k ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) | 
						
							| 57 | 2 | 3ad2ant1 |  |-  ( ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) -> A e. Fin ) | 
						
							| 58 | 29 | 3ad2antl1 |  |-  ( ( ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) /\ k e. A ) -> B e. CC ) | 
						
							| 59 |  | simp2 |  |-  ( ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) -> j e. A ) | 
						
							| 60 | 52 | biimparc |  |-  ( ( [_ j / k ]_ B = 0 /\ k = j ) -> B = 0 ) | 
						
							| 61 | 60 | 3ad2antl3 |  |-  ( ( ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) /\ k = j ) -> B = 0 ) | 
						
							| 62 | 56 57 58 59 61 | fprodeq0g |  |-  ( ( ph /\ j e. A /\ [_ j / k ]_ B = 0 ) -> prod_ k e. A B = 0 ) | 
						
							| 63 | 62 | rexlimdv3a |  |-  ( ph -> ( E. j e. A [_ j / k ]_ B = 0 -> prod_ k e. A B = 0 ) ) | 
						
							| 64 | 63 | imp |  |-  ( ( ph /\ E. j e. A [_ j / k ]_ B = 0 ) -> prod_ k e. A B = 0 ) | 
						
							| 65 |  | 0red |  |-  ( ( ph /\ k e. A ) -> 0 e. RR ) | 
						
							| 66 | 65 3 5 4 6 | letrd |  |-  ( ( ph /\ k e. A ) -> 0 <_ C ) | 
						
							| 67 | 1 2 5 66 | fprodge0 |  |-  ( ph -> 0 <_ prod_ k e. A C ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ph /\ E. j e. A [_ j / k ]_ B = 0 ) -> 0 <_ prod_ k e. A C ) | 
						
							| 69 | 64 68 | eqbrtrd |  |-  ( ( ph /\ E. j e. A [_ j / k ]_ B = 0 ) -> prod_ k e. A B <_ prod_ k e. A C ) | 
						
							| 70 | 54 69 | sylan2b |  |-  ( ( ph /\ -. A. k e. A B =/= 0 ) -> prod_ k e. A B <_ prod_ k e. A C ) | 
						
							| 71 | 44 70 | pm2.61dan |  |-  ( ph -> prod_ k e. A B <_ prod_ k e. A C ) |