Step |
Hyp |
Ref |
Expression |
1 |
|
fprodn0.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fprodn0.2 |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
3 |
|
fprodn0.3 |
|- ( ( ph /\ k e. A ) -> B =/= 0 ) |
4 |
|
prodeq1 |
|- ( A = (/) -> prod_ k e. A B = prod_ k e. (/) B ) |
5 |
|
prod0 |
|- prod_ k e. (/) B = 1 |
6 |
4 5
|
eqtrdi |
|- ( A = (/) -> prod_ k e. A B = 1 ) |
7 |
|
ax-1ne0 |
|- 1 =/= 0 |
8 |
7
|
a1i |
|- ( A = (/) -> 1 =/= 0 ) |
9 |
6 8
|
eqnetrd |
|- ( A = (/) -> prod_ k e. A B =/= 0 ) |
10 |
9
|
a1i |
|- ( ph -> ( A = (/) -> prod_ k e. A B =/= 0 ) ) |
11 |
|
prodfc |
|- prod_ m e. A ( ( k e. A |-> B ) ` m ) = prod_ k e. A B |
12 |
|
fveq2 |
|- ( m = ( f ` n ) -> ( ( k e. A |-> B ) ` m ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
13 |
|
simprl |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) |
14 |
|
simprr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
15 |
2
|
fmpttd |
|- ( ph -> ( k e. A |-> B ) : A --> CC ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> CC ) |
17 |
16
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. A ) -> ( ( k e. A |-> B ) ` m ) e. CC ) |
18 |
|
f1of |
|- ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) |
19 |
14 18
|
syl |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) |
20 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
21 |
19 20
|
sylan |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) |
22 |
12 13 14 17 21
|
fprod |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ m e. A ( ( k e. A |-> B ) ` m ) = ( seq 1 ( x. , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
23 |
11 22
|
eqtr3id |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ k e. A B = ( seq 1 ( x. , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) |
24 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
25 |
13 24
|
eleqtrdi |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
26 |
|
fco |
|- ( ( ( k e. A |-> B ) : A --> CC /\ f : ( 1 ... ( # ` A ) ) --> A ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
27 |
16 19 26
|
syl2anc |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> B ) o. f ) : ( 1 ... ( # ` A ) ) --> CC ) |
28 |
27
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` m ) e. CC ) |
29 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` A ) ) --> A /\ m e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` m ) = ( ( k e. A |-> B ) ` ( f ` m ) ) ) |
30 |
19 29
|
sylan |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` m ) = ( ( k e. A |-> B ) ` ( f ` m ) ) ) |
31 |
18
|
ffvelrnda |
|- ( ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ m e. ( 1 ... ( # ` A ) ) ) -> ( f ` m ) e. A ) |
32 |
31
|
adantll |
|- ( ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ m e. ( 1 ... ( # ` A ) ) ) -> ( f ` m ) e. A ) |
33 |
|
simpr |
|- ( ( ph /\ ( f ` m ) e. A ) -> ( f ` m ) e. A ) |
34 |
|
nfcv |
|- F/_ k ( f ` m ) |
35 |
|
nfv |
|- F/ k ph |
36 |
|
nfcsb1v |
|- F/_ k [_ ( f ` m ) / k ]_ B |
37 |
36
|
nfel1 |
|- F/ k [_ ( f ` m ) / k ]_ B e. CC |
38 |
35 37
|
nfim |
|- F/ k ( ph -> [_ ( f ` m ) / k ]_ B e. CC ) |
39 |
|
csbeq1a |
|- ( k = ( f ` m ) -> B = [_ ( f ` m ) / k ]_ B ) |
40 |
39
|
eleq1d |
|- ( k = ( f ` m ) -> ( B e. CC <-> [_ ( f ` m ) / k ]_ B e. CC ) ) |
41 |
40
|
imbi2d |
|- ( k = ( f ` m ) -> ( ( ph -> B e. CC ) <-> ( ph -> [_ ( f ` m ) / k ]_ B e. CC ) ) ) |
42 |
2
|
expcom |
|- ( k e. A -> ( ph -> B e. CC ) ) |
43 |
34 38 41 42
|
vtoclgaf |
|- ( ( f ` m ) e. A -> ( ph -> [_ ( f ` m ) / k ]_ B e. CC ) ) |
44 |
43
|
impcom |
|- ( ( ph /\ ( f ` m ) e. A ) -> [_ ( f ` m ) / k ]_ B e. CC ) |
45 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
46 |
45
|
fvmpts |
|- ( ( ( f ` m ) e. A /\ [_ ( f ` m ) / k ]_ B e. CC ) -> ( ( k e. A |-> B ) ` ( f ` m ) ) = [_ ( f ` m ) / k ]_ B ) |
47 |
33 44 46
|
syl2anc |
|- ( ( ph /\ ( f ` m ) e. A ) -> ( ( k e. A |-> B ) ` ( f ` m ) ) = [_ ( f ` m ) / k ]_ B ) |
48 |
|
nfcv |
|- F/_ k 0 |
49 |
36 48
|
nfne |
|- F/ k [_ ( f ` m ) / k ]_ B =/= 0 |
50 |
35 49
|
nfim |
|- F/ k ( ph -> [_ ( f ` m ) / k ]_ B =/= 0 ) |
51 |
39
|
neeq1d |
|- ( k = ( f ` m ) -> ( B =/= 0 <-> [_ ( f ` m ) / k ]_ B =/= 0 ) ) |
52 |
51
|
imbi2d |
|- ( k = ( f ` m ) -> ( ( ph -> B =/= 0 ) <-> ( ph -> [_ ( f ` m ) / k ]_ B =/= 0 ) ) ) |
53 |
3
|
expcom |
|- ( k e. A -> ( ph -> B =/= 0 ) ) |
54 |
34 50 52 53
|
vtoclgaf |
|- ( ( f ` m ) e. A -> ( ph -> [_ ( f ` m ) / k ]_ B =/= 0 ) ) |
55 |
54
|
impcom |
|- ( ( ph /\ ( f ` m ) e. A ) -> [_ ( f ` m ) / k ]_ B =/= 0 ) |
56 |
47 55
|
eqnetrd |
|- ( ( ph /\ ( f ` m ) e. A ) -> ( ( k e. A |-> B ) ` ( f ` m ) ) =/= 0 ) |
57 |
32 56
|
sylan2 |
|- ( ( ph /\ ( ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ m e. ( 1 ... ( # ` A ) ) ) ) -> ( ( k e. A |-> B ) ` ( f ` m ) ) =/= 0 ) |
58 |
57
|
anassrs |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. ( 1 ... ( # ` A ) ) ) -> ( ( k e. A |-> B ) ` ( f ` m ) ) =/= 0 ) |
59 |
30 58
|
eqnetrd |
|- ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ m e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` m ) =/= 0 ) |
60 |
25 28 59
|
prodfn0 |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( seq 1 ( x. , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) =/= 0 ) |
61 |
23 60
|
eqnetrd |
|- ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> prod_ k e. A B =/= 0 ) |
62 |
61
|
expr |
|- ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A B =/= 0 ) ) |
63 |
62
|
exlimdv |
|- ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> prod_ k e. A B =/= 0 ) ) |
64 |
63
|
expimpd |
|- ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> prod_ k e. A B =/= 0 ) ) |
65 |
|
fz1f1o |
|- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
66 |
1 65
|
syl |
|- ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
67 |
10 64 66
|
mpjaod |
|- ( ph -> prod_ k e. A B =/= 0 ) |