| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodn0f.kph |  |-  F/ k ph | 
						
							| 2 |  | fprodn0f.a |  |-  ( ph -> A e. Fin ) | 
						
							| 3 |  | fprodn0f.b |  |-  ( ( ph /\ k e. A ) -> B e. CC ) | 
						
							| 4 |  | fprodn0f.bne0 |  |-  ( ( ph /\ k e. A ) -> B =/= 0 ) | 
						
							| 5 |  | difssd |  |-  ( ph -> ( CC \ { 0 } ) C_ CC ) | 
						
							| 6 |  | eldifi |  |-  ( x e. ( CC \ { 0 } ) -> x e. CC ) | 
						
							| 7 | 6 | adantr |  |-  ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> x e. CC ) | 
						
							| 8 |  | eldifi |  |-  ( y e. ( CC \ { 0 } ) -> y e. CC ) | 
						
							| 9 | 8 | adantl |  |-  ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> y e. CC ) | 
						
							| 10 | 7 9 | mulcld |  |-  ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) e. CC ) | 
						
							| 11 |  | eldifsni |  |-  ( x e. ( CC \ { 0 } ) -> x =/= 0 ) | 
						
							| 12 | 11 | adantr |  |-  ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> x =/= 0 ) | 
						
							| 13 |  | eldifsni |  |-  ( y e. ( CC \ { 0 } ) -> y =/= 0 ) | 
						
							| 14 | 13 | adantl |  |-  ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> y =/= 0 ) | 
						
							| 15 | 7 9 12 14 | mulne0d |  |-  ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) =/= 0 ) | 
						
							| 16 | 15 | neneqd |  |-  ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> -. ( x x. y ) = 0 ) | 
						
							| 17 |  | ovex |  |-  ( x x. y ) e. _V | 
						
							| 18 | 17 | elsn |  |-  ( ( x x. y ) e. { 0 } <-> ( x x. y ) = 0 ) | 
						
							| 19 | 16 18 | sylnibr |  |-  ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> -. ( x x. y ) e. { 0 } ) | 
						
							| 20 | 10 19 | eldifd |  |-  ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) e. ( CC \ { 0 } ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) ) -> ( x x. y ) e. ( CC \ { 0 } ) ) | 
						
							| 22 | 4 | neneqd |  |-  ( ( ph /\ k e. A ) -> -. B = 0 ) | 
						
							| 23 |  | elsng |  |-  ( B e. CC -> ( B e. { 0 } <-> B = 0 ) ) | 
						
							| 24 | 3 23 | syl |  |-  ( ( ph /\ k e. A ) -> ( B e. { 0 } <-> B = 0 ) ) | 
						
							| 25 | 22 24 | mtbird |  |-  ( ( ph /\ k e. A ) -> -. B e. { 0 } ) | 
						
							| 26 | 3 25 | eldifd |  |-  ( ( ph /\ k e. A ) -> B e. ( CC \ { 0 } ) ) | 
						
							| 27 |  | ax-1cn |  |-  1 e. CC | 
						
							| 28 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 29 |  | 1ex |  |-  1 e. _V | 
						
							| 30 | 29 | elsn |  |-  ( 1 e. { 0 } <-> 1 = 0 ) | 
						
							| 31 | 28 30 | nemtbir |  |-  -. 1 e. { 0 } | 
						
							| 32 |  | eldif |  |-  ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ -. 1 e. { 0 } ) ) | 
						
							| 33 | 27 31 32 | mpbir2an |  |-  1 e. ( CC \ { 0 } ) | 
						
							| 34 | 33 | a1i |  |-  ( ph -> 1 e. ( CC \ { 0 } ) ) | 
						
							| 35 | 1 5 21 2 26 34 | fprodcllemf |  |-  ( ph -> prod_ k e. A B e. ( CC \ { 0 } ) ) | 
						
							| 36 |  | eldifsni |  |-  ( prod_ k e. A B e. ( CC \ { 0 } ) -> prod_ k e. A B =/= 0 ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> prod_ k e. A B =/= 0 ) |