Metamath Proof Explorer


Theorem fprodnncl

Description: Closure of a finite product of positive integers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1
|- ( ph -> A e. Fin )
fprodnncl.2
|- ( ( ph /\ k e. A ) -> B e. NN )
Assertion fprodnncl
|- ( ph -> prod_ k e. A B e. NN )

Proof

Step Hyp Ref Expression
1 fprodcl.1
 |-  ( ph -> A e. Fin )
2 fprodnncl.2
 |-  ( ( ph /\ k e. A ) -> B e. NN )
3 nnsscn
 |-  NN C_ CC
4 3 a1i
 |-  ( ph -> NN C_ CC )
5 nnmulcl
 |-  ( ( x e. NN /\ y e. NN ) -> ( x x. y ) e. NN )
6 5 adantl
 |-  ( ( ph /\ ( x e. NN /\ y e. NN ) ) -> ( x x. y ) e. NN )
7 1nn
 |-  1 e. NN
8 7 a1i
 |-  ( ph -> 1 e. NN )
9 4 6 1 2 8 fprodcllem
 |-  ( ph -> prod_ k e. A B e. NN )