Description: Closure of a finite product of positive integers. (Contributed by Scott Fenton, 14-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcl.1 | |- ( ph -> A e. Fin ) | |
| fprodnncl.2 | |- ( ( ph /\ k e. A ) -> B e. NN ) | ||
| Assertion | fprodnncl | |- ( ph -> prod_ k e. A B e. NN ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fprodcl.1 | |- ( ph -> A e. Fin ) | |
| 2 | fprodnncl.2 | |- ( ( ph /\ k e. A ) -> B e. NN ) | |
| 3 | nnsscn | |- NN C_ CC | |
| 4 | 3 | a1i | |- ( ph -> NN C_ CC ) | 
| 5 | nnmulcl | |- ( ( x e. NN /\ y e. NN ) -> ( x x. y ) e. NN ) | |
| 6 | 5 | adantl | |- ( ( ph /\ ( x e. NN /\ y e. NN ) ) -> ( x x. y ) e. NN ) | 
| 7 | 1nn | |- 1 e. NN | |
| 8 | 7 | a1i | |- ( ph -> 1 e. NN ) | 
| 9 | 4 6 1 2 8 | fprodcllem | |- ( ph -> prod_ k e. A B e. NN ) |