| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodp1.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
fprodp1.2 |
|- ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. CC ) |
| 3 |
|
fprodp1.3 |
|- ( k = ( N + 1 ) -> A = B ) |
| 4 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 5 |
1 4
|
syl |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 6 |
5 2 3
|
fprodm1 |
|- ( ph -> prod_ k e. ( M ... ( N + 1 ) ) A = ( prod_ k e. ( M ... ( ( N + 1 ) - 1 ) ) A x. B ) ) |
| 7 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 8 |
1 7
|
syl |
|- ( ph -> N e. ZZ ) |
| 9 |
8
|
zcnd |
|- ( ph -> N e. CC ) |
| 10 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 11 |
9 10
|
pncand |
|- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
| 12 |
11
|
oveq2d |
|- ( ph -> ( M ... ( ( N + 1 ) - 1 ) ) = ( M ... N ) ) |
| 13 |
12
|
prodeq1d |
|- ( ph -> prod_ k e. ( M ... ( ( N + 1 ) - 1 ) ) A = prod_ k e. ( M ... N ) A ) |
| 14 |
13
|
oveq1d |
|- ( ph -> ( prod_ k e. ( M ... ( ( N + 1 ) - 1 ) ) A x. B ) = ( prod_ k e. ( M ... N ) A x. B ) ) |
| 15 |
6 14
|
eqtrd |
|- ( ph -> prod_ k e. ( M ... ( N + 1 ) ) A = ( prod_ k e. ( M ... N ) A x. B ) ) |