| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodp1s.1 |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 2 |  | fprodp1s.2 |  |-  ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. CC ) | 
						
							| 3 | 2 | ralrimiva |  |-  ( ph -> A. k e. ( M ... ( N + 1 ) ) A e. CC ) | 
						
							| 4 |  | nfcsb1v |  |-  F/_ k [_ m / k ]_ A | 
						
							| 5 | 4 | nfel1 |  |-  F/ k [_ m / k ]_ A e. CC | 
						
							| 6 |  | csbeq1a |  |-  ( k = m -> A = [_ m / k ]_ A ) | 
						
							| 7 | 6 | eleq1d |  |-  ( k = m -> ( A e. CC <-> [_ m / k ]_ A e. CC ) ) | 
						
							| 8 | 5 7 | rspc |  |-  ( m e. ( M ... ( N + 1 ) ) -> ( A. k e. ( M ... ( N + 1 ) ) A e. CC -> [_ m / k ]_ A e. CC ) ) | 
						
							| 9 | 3 8 | mpan9 |  |-  ( ( ph /\ m e. ( M ... ( N + 1 ) ) ) -> [_ m / k ]_ A e. CC ) | 
						
							| 10 |  | csbeq1 |  |-  ( m = ( N + 1 ) -> [_ m / k ]_ A = [_ ( N + 1 ) / k ]_ A ) | 
						
							| 11 | 1 9 10 | fprodp1 |  |-  ( ph -> prod_ m e. ( M ... ( N + 1 ) ) [_ m / k ]_ A = ( prod_ m e. ( M ... N ) [_ m / k ]_ A x. [_ ( N + 1 ) / k ]_ A ) ) | 
						
							| 12 |  | nfcv |  |-  F/_ m A | 
						
							| 13 | 12 4 6 | cbvprodi |  |-  prod_ k e. ( M ... ( N + 1 ) ) A = prod_ m e. ( M ... ( N + 1 ) ) [_ m / k ]_ A | 
						
							| 14 | 12 4 6 | cbvprodi |  |-  prod_ k e. ( M ... N ) A = prod_ m e. ( M ... N ) [_ m / k ]_ A | 
						
							| 15 | 14 | oveq1i |  |-  ( prod_ k e. ( M ... N ) A x. [_ ( N + 1 ) / k ]_ A ) = ( prod_ m e. ( M ... N ) [_ m / k ]_ A x. [_ ( N + 1 ) / k ]_ A ) | 
						
							| 16 | 11 13 15 | 3eqtr4g |  |-  ( ph -> prod_ k e. ( M ... ( N + 1 ) ) A = ( prod_ k e. ( M ... N ) A x. [_ ( N + 1 ) / k ]_ A ) ) |