Metamath Proof Explorer


Theorem fprodrecl

Description: Closure of a finite product of real numbers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1
|- ( ph -> A e. Fin )
fprodrecl.2
|- ( ( ph /\ k e. A ) -> B e. RR )
Assertion fprodrecl
|- ( ph -> prod_ k e. A B e. RR )

Proof

Step Hyp Ref Expression
1 fprodcl.1
 |-  ( ph -> A e. Fin )
2 fprodrecl.2
 |-  ( ( ph /\ k e. A ) -> B e. RR )
3 ax-resscn
 |-  RR C_ CC
4 3 a1i
 |-  ( ph -> RR C_ CC )
5 remulcl
 |-  ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR )
6 5 adantl
 |-  ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR )
7 1red
 |-  ( ph -> 1 e. RR )
8 4 6 1 2 7 fprodcllem
 |-  ( ph -> prod_ k e. A B e. RR )