Description: Closure of a finite product of real numbers. (Contributed by Scott Fenton, 14-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodcl.1 | |- ( ph -> A e. Fin ) |
|
fprodrecl.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
Assertion | fprodrecl | |- ( ph -> prod_ k e. A B e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcl.1 | |- ( ph -> A e. Fin ) |
|
2 | fprodrecl.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
3 | ax-resscn | |- RR C_ CC |
|
4 | 3 | a1i | |- ( ph -> RR C_ CC ) |
5 | remulcl | |- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
|
6 | 5 | adantl | |- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
7 | 1red | |- ( ph -> 1 e. RR ) |
|
8 | 4 6 1 2 7 | fprodcllem | |- ( ph -> prod_ k e. A B e. RR ) |