Metamath Proof Explorer


Theorem fprodreclf

Description: Closure of a finite product of real numbers. A version of fprodrecl using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodreclf.kph
|- F/ k ph
fprodcl.a
|- ( ph -> A e. Fin )
fprodrecl.b
|- ( ( ph /\ k e. A ) -> B e. RR )
Assertion fprodreclf
|- ( ph -> prod_ k e. A B e. RR )

Proof

Step Hyp Ref Expression
1 fprodreclf.kph
 |-  F/ k ph
2 fprodcl.a
 |-  ( ph -> A e. Fin )
3 fprodrecl.b
 |-  ( ( ph /\ k e. A ) -> B e. RR )
4 ax-resscn
 |-  RR C_ CC
5 4 a1i
 |-  ( ph -> RR C_ CC )
6 remulcl
 |-  ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR )
7 6 adantl
 |-  ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR )
8 1red
 |-  ( ph -> 1 e. RR )
9 1 5 7 2 3 8 fprodcllemf
 |-  ( ph -> prod_ k e. A B e. RR )