Metamath Proof Explorer


Theorem fprodrpcl

Description: Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1
|- ( ph -> A e. Fin )
fprodrpcl.2
|- ( ( ph /\ k e. A ) -> B e. RR+ )
Assertion fprodrpcl
|- ( ph -> prod_ k e. A B e. RR+ )

Proof

Step Hyp Ref Expression
1 fprodcl.1
 |-  ( ph -> A e. Fin )
2 fprodrpcl.2
 |-  ( ( ph /\ k e. A ) -> B e. RR+ )
3 rpssre
 |-  RR+ C_ RR
4 ax-resscn
 |-  RR C_ CC
5 3 4 sstri
 |-  RR+ C_ CC
6 5 a1i
 |-  ( ph -> RR+ C_ CC )
7 rpmulcl
 |-  ( ( x e. RR+ /\ y e. RR+ ) -> ( x x. y ) e. RR+ )
8 7 adantl
 |-  ( ( ph /\ ( x e. RR+ /\ y e. RR+ ) ) -> ( x x. y ) e. RR+ )
9 1rp
 |-  1 e. RR+
10 9 a1i
 |-  ( ph -> 1 e. RR+ )
11 6 8 1 2 10 fprodcllem
 |-  ( ph -> prod_ k e. A B e. RR+ )