| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodser.1 |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = A ) | 
						
							| 2 |  | fprodser.2 |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 3 |  | fprodser.3 |  |-  ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) | 
						
							| 4 |  | prodfc |  |-  prod_ j e. ( M ... N ) ( ( k e. ( M ... N ) |-> A ) ` j ) = prod_ k e. ( M ... N ) A | 
						
							| 5 |  | fveq2 |  |-  ( j = ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) -> ( ( k e. ( M ... N ) |-> A ) ` j ) = ( ( k e. ( M ... N ) |-> A ) ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) ) | 
						
							| 6 |  | eluzelz |  |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ ) | 
						
							| 7 | 2 6 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 8 | 7 | zcnd |  |-  ( ph -> N e. CC ) | 
						
							| 9 |  | eluzel2 |  |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ ) | 
						
							| 10 | 2 9 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 11 | 10 | zcnd |  |-  ( ph -> M e. CC ) | 
						
							| 12 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 13 | 8 11 12 | subadd23d |  |-  ( ph -> ( ( N - M ) + 1 ) = ( N + ( 1 - M ) ) ) | 
						
							| 14 | 13 | eqcomd |  |-  ( ph -> ( N + ( 1 - M ) ) = ( ( N - M ) + 1 ) ) | 
						
							| 15 |  | uznn0sub |  |-  ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) | 
						
							| 16 | 2 15 | syl |  |-  ( ph -> ( N - M ) e. NN0 ) | 
						
							| 17 |  | nn0p1nn |  |-  ( ( N - M ) e. NN0 -> ( ( N - M ) + 1 ) e. NN ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( ( N - M ) + 1 ) e. NN ) | 
						
							| 19 | 14 18 | eqeltrd |  |-  ( ph -> ( N + ( 1 - M ) ) e. NN ) | 
						
							| 20 | 12 11 | pncan3d |  |-  ( ph -> ( 1 + ( M - 1 ) ) = M ) | 
						
							| 21 | 8 12 11 | pnpncand |  |-  ( ph -> ( ( N + ( 1 - M ) ) + ( M - 1 ) ) = N ) | 
						
							| 22 | 20 21 | oveq12d |  |-  ( ph -> ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) = ( M ... N ) ) | 
						
							| 23 | 22 | eleq2d |  |-  ( ph -> ( p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) <-> p e. ( M ... N ) ) ) | 
						
							| 24 | 23 | biimpa |  |-  ( ( ph /\ p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) -> p e. ( M ... N ) ) | 
						
							| 25 |  | elfzelz |  |-  ( p e. ( M ... N ) -> p e. ZZ ) | 
						
							| 26 | 25 | zcnd |  |-  ( p e. ( M ... N ) -> p e. CC ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ph /\ p e. ( M ... N ) ) -> p e. CC ) | 
						
							| 28 |  | peano2zm |  |-  ( M e. ZZ -> ( M - 1 ) e. ZZ ) | 
						
							| 29 | 10 28 | syl |  |-  ( ph -> ( M - 1 ) e. ZZ ) | 
						
							| 30 | 29 | zcnd |  |-  ( ph -> ( M - 1 ) e. CC ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ p e. ( M ... N ) ) -> ( M - 1 ) e. CC ) | 
						
							| 32 | 27 31 | npcand |  |-  ( ( ph /\ p e. ( M ... N ) ) -> ( ( p - ( M - 1 ) ) + ( M - 1 ) ) = p ) | 
						
							| 33 |  | simpr |  |-  ( ( ph /\ p e. ( M ... N ) ) -> p e. ( M ... N ) ) | 
						
							| 34 | 32 33 | eqeltrd |  |-  ( ( ph /\ p e. ( M ... N ) ) -> ( ( p - ( M - 1 ) ) + ( M - 1 ) ) e. ( M ... N ) ) | 
						
							| 35 |  | ovex |  |-  ( p - ( M - 1 ) ) e. _V | 
						
							| 36 |  | oveq1 |  |-  ( n = ( p - ( M - 1 ) ) -> ( n + ( M - 1 ) ) = ( ( p - ( M - 1 ) ) + ( M - 1 ) ) ) | 
						
							| 37 | 36 | eleq1d |  |-  ( n = ( p - ( M - 1 ) ) -> ( ( n + ( M - 1 ) ) e. ( M ... N ) <-> ( ( p - ( M - 1 ) ) + ( M - 1 ) ) e. ( M ... N ) ) ) | 
						
							| 38 | 35 37 | sbcie |  |-  ( [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) <-> ( ( p - ( M - 1 ) ) + ( M - 1 ) ) e. ( M ... N ) ) | 
						
							| 39 | 34 38 | sylibr |  |-  ( ( ph /\ p e. ( M ... N ) ) -> [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) ) | 
						
							| 40 | 24 39 | syldan |  |-  ( ( ph /\ p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) -> [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) ) | 
						
							| 41 | 40 | ralrimiva |  |-  ( ph -> A. p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) ) | 
						
							| 42 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 43 | 19 | nnzd |  |-  ( ph -> ( N + ( 1 - M ) ) e. ZZ ) | 
						
							| 44 |  | fzshftral |  |-  ( ( 1 e. ZZ /\ ( N + ( 1 - M ) ) e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( A. n e. ( 1 ... ( N + ( 1 - M ) ) ) ( n + ( M - 1 ) ) e. ( M ... N ) <-> A. p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) ) ) | 
						
							| 45 | 42 43 29 44 | syl3anc |  |-  ( ph -> ( A. n e. ( 1 ... ( N + ( 1 - M ) ) ) ( n + ( M - 1 ) ) e. ( M ... N ) <-> A. p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) ) ) | 
						
							| 46 | 41 45 | mpbird |  |-  ( ph -> A. n e. ( 1 ... ( N + ( 1 - M ) ) ) ( n + ( M - 1 ) ) e. ( M ... N ) ) | 
						
							| 47 | 10 | adantr |  |-  ( ( ph /\ p e. ( M ... N ) ) -> M e. ZZ ) | 
						
							| 48 | 7 | adantr |  |-  ( ( ph /\ p e. ( M ... N ) ) -> N e. ZZ ) | 
						
							| 49 | 25 | adantl |  |-  ( ( ph /\ p e. ( M ... N ) ) -> p e. ZZ ) | 
						
							| 50 | 29 | adantr |  |-  ( ( ph /\ p e. ( M ... N ) ) -> ( M - 1 ) e. ZZ ) | 
						
							| 51 |  | fzsubel |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( p e. ZZ /\ ( M - 1 ) e. ZZ ) ) -> ( p e. ( M ... N ) <-> ( p - ( M - 1 ) ) e. ( ( M - ( M - 1 ) ) ... ( N - ( M - 1 ) ) ) ) ) | 
						
							| 52 | 47 48 49 50 51 | syl22anc |  |-  ( ( ph /\ p e. ( M ... N ) ) -> ( p e. ( M ... N ) <-> ( p - ( M - 1 ) ) e. ( ( M - ( M - 1 ) ) ... ( N - ( M - 1 ) ) ) ) ) | 
						
							| 53 | 33 52 | mpbid |  |-  ( ( ph /\ p e. ( M ... N ) ) -> ( p - ( M - 1 ) ) e. ( ( M - ( M - 1 ) ) ... ( N - ( M - 1 ) ) ) ) | 
						
							| 54 | 11 12 | nncand |  |-  ( ph -> ( M - ( M - 1 ) ) = 1 ) | 
						
							| 55 | 8 11 12 | subsub2d |  |-  ( ph -> ( N - ( M - 1 ) ) = ( N + ( 1 - M ) ) ) | 
						
							| 56 | 54 55 | oveq12d |  |-  ( ph -> ( ( M - ( M - 1 ) ) ... ( N - ( M - 1 ) ) ) = ( 1 ... ( N + ( 1 - M ) ) ) ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ p e. ( M ... N ) ) -> ( ( M - ( M - 1 ) ) ... ( N - ( M - 1 ) ) ) = ( 1 ... ( N + ( 1 - M ) ) ) ) | 
						
							| 58 | 53 57 | eleqtrd |  |-  ( ( ph /\ p e. ( M ... N ) ) -> ( p - ( M - 1 ) ) e. ( 1 ... ( N + ( 1 - M ) ) ) ) | 
						
							| 59 | 32 | eqcomd |  |-  ( ( ph /\ p e. ( M ... N ) ) -> p = ( ( p - ( M - 1 ) ) + ( M - 1 ) ) ) | 
						
							| 60 | 36 | rspceeqv |  |-  ( ( ( p - ( M - 1 ) ) e. ( 1 ... ( N + ( 1 - M ) ) ) /\ p = ( ( p - ( M - 1 ) ) + ( M - 1 ) ) ) -> E. n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) ) | 
						
							| 61 | 58 59 60 | syl2anc |  |-  ( ( ph /\ p e. ( M ... N ) ) -> E. n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) ) | 
						
							| 62 |  | elfzelz |  |-  ( n e. ( 1 ... ( N + ( 1 - M ) ) ) -> n e. ZZ ) | 
						
							| 63 | 62 | zcnd |  |-  ( n e. ( 1 ... ( N + ( 1 - M ) ) ) -> n e. CC ) | 
						
							| 64 |  | elfzelz |  |-  ( m e. ( 1 ... ( N + ( 1 - M ) ) ) -> m e. ZZ ) | 
						
							| 65 | 64 | zcnd |  |-  ( m e. ( 1 ... ( N + ( 1 - M ) ) ) -> m e. CC ) | 
						
							| 66 | 63 65 | anim12i |  |-  ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( n e. CC /\ m e. CC ) ) | 
						
							| 67 |  | eqtr2 |  |-  ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> ( n + ( M - 1 ) ) = ( m + ( M - 1 ) ) ) | 
						
							| 68 |  | simprl |  |-  ( ( ph /\ ( n e. CC /\ m e. CC ) ) -> n e. CC ) | 
						
							| 69 |  | simprr |  |-  ( ( ph /\ ( n e. CC /\ m e. CC ) ) -> m e. CC ) | 
						
							| 70 | 30 | adantr |  |-  ( ( ph /\ ( n e. CC /\ m e. CC ) ) -> ( M - 1 ) e. CC ) | 
						
							| 71 | 68 69 70 | addcan2d |  |-  ( ( ph /\ ( n e. CC /\ m e. CC ) ) -> ( ( n + ( M - 1 ) ) = ( m + ( M - 1 ) ) <-> n = m ) ) | 
						
							| 72 | 67 71 | imbitrid |  |-  ( ( ph /\ ( n e. CC /\ m e. CC ) ) -> ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> n = m ) ) | 
						
							| 73 | 66 72 | sylan2 |  |-  ( ( ph /\ ( n e. ( 1 ... ( N + ( 1 - M ) ) ) /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) ) -> ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> n = m ) ) | 
						
							| 74 | 73 | ralrimivva |  |-  ( ph -> A. n e. ( 1 ... ( N + ( 1 - M ) ) ) A. m e. ( 1 ... ( N + ( 1 - M ) ) ) ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> n = m ) ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ph /\ p e. ( M ... N ) ) -> A. n e. ( 1 ... ( N + ( 1 - M ) ) ) A. m e. ( 1 ... ( N + ( 1 - M ) ) ) ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> n = m ) ) | 
						
							| 76 |  | oveq1 |  |-  ( n = m -> ( n + ( M - 1 ) ) = ( m + ( M - 1 ) ) ) | 
						
							| 77 | 76 | eqeq2d |  |-  ( n = m -> ( p = ( n + ( M - 1 ) ) <-> p = ( m + ( M - 1 ) ) ) ) | 
						
							| 78 | 77 | reu4 |  |-  ( E! n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) <-> ( E. n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) /\ A. n e. ( 1 ... ( N + ( 1 - M ) ) ) A. m e. ( 1 ... ( N + ( 1 - M ) ) ) ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> n = m ) ) ) | 
						
							| 79 | 61 75 78 | sylanbrc |  |-  ( ( ph /\ p e. ( M ... N ) ) -> E! n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) ) | 
						
							| 80 | 79 | ralrimiva |  |-  ( ph -> A. p e. ( M ... N ) E! n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) ) | 
						
							| 81 |  | eqid |  |-  ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) = ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) | 
						
							| 82 | 81 | f1ompt |  |-  ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) -1-1-onto-> ( M ... N ) <-> ( A. n e. ( 1 ... ( N + ( 1 - M ) ) ) ( n + ( M - 1 ) ) e. ( M ... N ) /\ A. p e. ( M ... N ) E! n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) ) ) | 
						
							| 83 | 46 80 82 | sylanbrc |  |-  ( ph -> ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) -1-1-onto-> ( M ... N ) ) | 
						
							| 84 | 3 | fmpttd |  |-  ( ph -> ( k e. ( M ... N ) |-> A ) : ( M ... N ) --> CC ) | 
						
							| 85 | 84 | ffvelcdmda |  |-  ( ( ph /\ j e. ( M ... N ) ) -> ( ( k e. ( M ... N ) |-> A ) ` j ) e. CC ) | 
						
							| 86 |  | simpr |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> m e. ( 1 ... ( N + ( 1 - M ) ) ) ) | 
						
							| 87 |  | 1zzd |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> 1 e. ZZ ) | 
						
							| 88 | 43 | adantr |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( N + ( 1 - M ) ) e. ZZ ) | 
						
							| 89 | 64 | adantl |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> m e. ZZ ) | 
						
							| 90 | 29 | adantr |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( M - 1 ) e. ZZ ) | 
						
							| 91 |  | fzaddel |  |-  ( ( ( 1 e. ZZ /\ ( N + ( 1 - M ) ) e. ZZ ) /\ ( m e. ZZ /\ ( M - 1 ) e. ZZ ) ) -> ( m e. ( 1 ... ( N + ( 1 - M ) ) ) <-> ( m + ( M - 1 ) ) e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) ) | 
						
							| 92 | 87 88 89 90 91 | syl22anc |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( m e. ( 1 ... ( N + ( 1 - M ) ) ) <-> ( m + ( M - 1 ) ) e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) ) | 
						
							| 93 | 86 92 | mpbid |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( m + ( M - 1 ) ) e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) | 
						
							| 94 | 22 | adantr |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) = ( M ... N ) ) | 
						
							| 95 | 93 94 | eleqtrd |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( m + ( M - 1 ) ) e. ( M ... N ) ) | 
						
							| 96 | 1 | ralrimiva |  |-  ( ph -> A. k e. ( M ... N ) ( F ` k ) = A ) | 
						
							| 97 |  | nfcsb1v |  |-  F/_ k [_ ( m + ( M - 1 ) ) / k ]_ A | 
						
							| 98 | 97 | nfeq2 |  |-  F/ k ( F ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A | 
						
							| 99 |  | fveq2 |  |-  ( k = ( m + ( M - 1 ) ) -> ( F ` k ) = ( F ` ( m + ( M - 1 ) ) ) ) | 
						
							| 100 |  | csbeq1a |  |-  ( k = ( m + ( M - 1 ) ) -> A = [_ ( m + ( M - 1 ) ) / k ]_ A ) | 
						
							| 101 | 99 100 | eqeq12d |  |-  ( k = ( m + ( M - 1 ) ) -> ( ( F ` k ) = A <-> ( F ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) ) | 
						
							| 102 | 98 101 | rspc |  |-  ( ( m + ( M - 1 ) ) e. ( M ... N ) -> ( A. k e. ( M ... N ) ( F ` k ) = A -> ( F ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) ) | 
						
							| 103 | 96 102 | mpan9 |  |-  ( ( ph /\ ( m + ( M - 1 ) ) e. ( M ... N ) ) -> ( F ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) | 
						
							| 104 | 95 103 | syldan |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( F ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) | 
						
							| 105 |  | f1of |  |-  ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) -1-1-onto-> ( M ... N ) -> ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) --> ( M ... N ) ) | 
						
							| 106 | 83 105 | syl |  |-  ( ph -> ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) --> ( M ... N ) ) | 
						
							| 107 |  | fvco3 |  |-  ( ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) --> ( M ... N ) /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ` m ) = ( F ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) ) | 
						
							| 108 | 106 107 | sylan |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ` m ) = ( F ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) ) | 
						
							| 109 |  | ovex |  |-  ( m + ( M - 1 ) ) e. _V | 
						
							| 110 | 76 81 109 | fvmpt |  |-  ( m e. ( 1 ... ( N + ( 1 - M ) ) ) -> ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) = ( m + ( M - 1 ) ) ) | 
						
							| 111 | 110 | adantl |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) = ( m + ( M - 1 ) ) ) | 
						
							| 112 | 111 | fveq2d |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( F ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) = ( F ` ( m + ( M - 1 ) ) ) ) | 
						
							| 113 | 108 112 | eqtrd |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ` m ) = ( F ` ( m + ( M - 1 ) ) ) ) | 
						
							| 114 | 111 | fveq2d |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( k e. ( M ... N ) |-> A ) ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) = ( ( k e. ( M ... N ) |-> A ) ` ( m + ( M - 1 ) ) ) ) | 
						
							| 115 | 3 | ralrimiva |  |-  ( ph -> A. k e. ( M ... N ) A e. CC ) | 
						
							| 116 | 97 | nfel1 |  |-  F/ k [_ ( m + ( M - 1 ) ) / k ]_ A e. CC | 
						
							| 117 | 100 | eleq1d |  |-  ( k = ( m + ( M - 1 ) ) -> ( A e. CC <-> [_ ( m + ( M - 1 ) ) / k ]_ A e. CC ) ) | 
						
							| 118 | 116 117 | rspc |  |-  ( ( m + ( M - 1 ) ) e. ( M ... N ) -> ( A. k e. ( M ... N ) A e. CC -> [_ ( m + ( M - 1 ) ) / k ]_ A e. CC ) ) | 
						
							| 119 | 115 118 | mpan9 |  |-  ( ( ph /\ ( m + ( M - 1 ) ) e. ( M ... N ) ) -> [_ ( m + ( M - 1 ) ) / k ]_ A e. CC ) | 
						
							| 120 | 95 119 | syldan |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> [_ ( m + ( M - 1 ) ) / k ]_ A e. CC ) | 
						
							| 121 |  | eqid |  |-  ( k e. ( M ... N ) |-> A ) = ( k e. ( M ... N ) |-> A ) | 
						
							| 122 | 121 | fvmpts |  |-  ( ( ( m + ( M - 1 ) ) e. ( M ... N ) /\ [_ ( m + ( M - 1 ) ) / k ]_ A e. CC ) -> ( ( k e. ( M ... N ) |-> A ) ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) | 
						
							| 123 | 95 120 122 | syl2anc |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( k e. ( M ... N ) |-> A ) ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) | 
						
							| 124 | 114 123 | eqtrd |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( k e. ( M ... N ) |-> A ) ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) | 
						
							| 125 | 104 113 124 | 3eqtr4d |  |-  ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ` m ) = ( ( k e. ( M ... N ) |-> A ) ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) ) | 
						
							| 126 | 5 19 83 85 125 | fprod |  |-  ( ph -> prod_ j e. ( M ... N ) ( ( k e. ( M ... N ) |-> A ) ` j ) = ( seq 1 ( x. , ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ) ` ( N + ( 1 - M ) ) ) ) | 
						
							| 127 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 128 | 19 127 | eleqtrdi |  |-  ( ph -> ( N + ( 1 - M ) ) e. ( ZZ>= ` 1 ) ) | 
						
							| 129 | 128 29 113 | seqshft2 |  |-  ( ph -> ( seq 1 ( x. , ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ) ` ( N + ( 1 - M ) ) ) = ( seq ( 1 + ( M - 1 ) ) ( x. , F ) ` ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) | 
						
							| 130 | 20 | seqeq1d |  |-  ( ph -> seq ( 1 + ( M - 1 ) ) ( x. , F ) = seq M ( x. , F ) ) | 
						
							| 131 | 130 21 | fveq12d |  |-  ( ph -> ( seq ( 1 + ( M - 1 ) ) ( x. , F ) ` ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) = ( seq M ( x. , F ) ` N ) ) | 
						
							| 132 | 126 129 131 | 3eqtrd |  |-  ( ph -> prod_ j e. ( M ... N ) ( ( k e. ( M ... N ) |-> A ) ` j ) = ( seq M ( x. , F ) ` N ) ) | 
						
							| 133 | 4 132 | eqtr3id |  |-  ( ph -> prod_ k e. ( M ... N ) A = ( seq M ( x. , F ) ` N ) ) |