| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodshft.1 |  |-  ( ph -> K e. ZZ ) | 
						
							| 2 |  | fprodshft.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | fprodshft.3 |  |-  ( ph -> N e. ZZ ) | 
						
							| 4 |  | fprodshft.4 |  |-  ( ( ph /\ j e. ( M ... N ) ) -> A e. CC ) | 
						
							| 5 |  | fprodshft.5 |  |-  ( j = ( k - K ) -> A = B ) | 
						
							| 6 |  | fzfid |  |-  ( ph -> ( ( M + K ) ... ( N + K ) ) e. Fin ) | 
						
							| 7 | 1 2 3 | mptfzshft |  |-  ( ph -> ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) : ( ( M + K ) ... ( N + K ) ) -1-1-onto-> ( M ... N ) ) | 
						
							| 8 |  | oveq1 |  |-  ( j = k -> ( j - K ) = ( k - K ) ) | 
						
							| 9 |  | eqid |  |-  ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) = ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) | 
						
							| 10 |  | ovex |  |-  ( k - K ) e. _V | 
						
							| 11 | 8 9 10 | fvmpt |  |-  ( k e. ( ( M + K ) ... ( N + K ) ) -> ( ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) ` k ) = ( k - K ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( ( j e. ( ( M + K ) ... ( N + K ) ) |-> ( j - K ) ) ` k ) = ( k - K ) ) | 
						
							| 13 | 5 6 7 12 4 | fprodf1o |  |-  ( ph -> prod_ j e. ( M ... N ) A = prod_ k e. ( ( M + K ) ... ( N + K ) ) B ) |