Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodsplit1.a | |- ( ph -> A e. Fin ) |
|
fprodsplit1.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
fprodsplit1.c | |- ( ph -> C e. A ) |
||
fprodsplit1.d | |- ( ( ph /\ k = C ) -> B = D ) |
||
Assertion | fprodsplit1 | |- ( ph -> prod_ k e. A B = ( D x. prod_ k e. ( A \ { C } ) B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsplit1.a | |- ( ph -> A e. Fin ) |
|
2 | fprodsplit1.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
3 | fprodsplit1.c | |- ( ph -> C e. A ) |
|
4 | fprodsplit1.d | |- ( ( ph /\ k = C ) -> B = D ) |
|
5 | nfv | |- F/ k ph |
|
6 | nfcvd | |- ( ph -> F/_ k D ) |
|
7 | 5 6 1 2 3 4 | fprodsplit1f | |- ( ph -> prod_ k e. A B = ( D x. prod_ k e. ( A \ { C } ) B ) ) |