Metamath Proof Explorer


Theorem fprodsplit1

Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodsplit1.a
|- ( ph -> A e. Fin )
fprodsplit1.b
|- ( ( ph /\ k e. A ) -> B e. CC )
fprodsplit1.c
|- ( ph -> C e. A )
fprodsplit1.d
|- ( ( ph /\ k = C ) -> B = D )
Assertion fprodsplit1
|- ( ph -> prod_ k e. A B = ( D x. prod_ k e. ( A \ { C } ) B ) )

Proof

Step Hyp Ref Expression
1 fprodsplit1.a
 |-  ( ph -> A e. Fin )
2 fprodsplit1.b
 |-  ( ( ph /\ k e. A ) -> B e. CC )
3 fprodsplit1.c
 |-  ( ph -> C e. A )
4 fprodsplit1.d
 |-  ( ( ph /\ k = C ) -> B = D )
5 nfv
 |-  F/ k ph
6 nfcvd
 |-  ( ph -> F/_ k D )
7 5 6 1 2 3 4 fprodsplit1f
 |-  ( ph -> prod_ k e. A B = ( D x. prod_ k e. ( A \ { C } ) B ) )