| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodsplit1f.kph |  |-  F/ k ph | 
						
							| 2 |  | fprodsplit1f.fk |  |-  ( ph -> F/_ k D ) | 
						
							| 3 |  | fprodsplit1f.a |  |-  ( ph -> A e. Fin ) | 
						
							| 4 |  | fprodsplit1f.b |  |-  ( ( ph /\ k e. A ) -> B e. CC ) | 
						
							| 5 |  | fprodsplit1f.c |  |-  ( ph -> C e. A ) | 
						
							| 6 |  | fprodsplit1f.d |  |-  ( ( ph /\ k = C ) -> B = D ) | 
						
							| 7 |  | disjdif |  |-  ( { C } i^i ( A \ { C } ) ) = (/) | 
						
							| 8 | 7 | a1i |  |-  ( ph -> ( { C } i^i ( A \ { C } ) ) = (/) ) | 
						
							| 9 | 5 | snssd |  |-  ( ph -> { C } C_ A ) | 
						
							| 10 |  | undif |  |-  ( { C } C_ A <-> ( { C } u. ( A \ { C } ) ) = A ) | 
						
							| 11 | 9 10 | sylib |  |-  ( ph -> ( { C } u. ( A \ { C } ) ) = A ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ph -> A = ( { C } u. ( A \ { C } ) ) ) | 
						
							| 13 | 1 8 12 3 4 | fprodsplitf |  |-  ( ph -> prod_ k e. A B = ( prod_ k e. { C } B x. prod_ k e. ( A \ { C } ) B ) ) | 
						
							| 14 | 5 | ancli |  |-  ( ph -> ( ph /\ C e. A ) ) | 
						
							| 15 |  | nfv |  |-  F/ k C e. A | 
						
							| 16 | 1 15 | nfan |  |-  F/ k ( ph /\ C e. A ) | 
						
							| 17 |  | nfcsb1v |  |-  F/_ k [_ C / k ]_ B | 
						
							| 18 | 17 | nfel1 |  |-  F/ k [_ C / k ]_ B e. CC | 
						
							| 19 | 16 18 | nfim |  |-  F/ k ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) | 
						
							| 20 |  | eleq1 |  |-  ( k = C -> ( k e. A <-> C e. A ) ) | 
						
							| 21 | 20 | anbi2d |  |-  ( k = C -> ( ( ph /\ k e. A ) <-> ( ph /\ C e. A ) ) ) | 
						
							| 22 |  | csbeq1a |  |-  ( k = C -> B = [_ C / k ]_ B ) | 
						
							| 23 | 22 | eleq1d |  |-  ( k = C -> ( B e. CC <-> [_ C / k ]_ B e. CC ) ) | 
						
							| 24 | 21 23 | imbi12d |  |-  ( k = C -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) ) ) | 
						
							| 25 | 19 24 4 | vtoclg1f |  |-  ( C e. A -> ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) ) | 
						
							| 26 | 5 14 25 | sylc |  |-  ( ph -> [_ C / k ]_ B e. CC ) | 
						
							| 27 |  | prodsns |  |-  ( ( C e. A /\ [_ C / k ]_ B e. CC ) -> prod_ k e. { C } B = [_ C / k ]_ B ) | 
						
							| 28 | 5 26 27 | syl2anc |  |-  ( ph -> prod_ k e. { C } B = [_ C / k ]_ B ) | 
						
							| 29 | 1 2 5 6 | csbiedf |  |-  ( ph -> [_ C / k ]_ B = D ) | 
						
							| 30 | 28 29 | eqtrd |  |-  ( ph -> prod_ k e. { C } B = D ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ph -> ( prod_ k e. { C } B x. prod_ k e. ( A \ { C } ) B ) = ( D x. prod_ k e. ( A \ { C } ) B ) ) | 
						
							| 32 | 13 31 | eqtrd |  |-  ( ph -> prod_ k e. A B = ( D x. prod_ k e. ( A \ { C } ) B ) ) |