Step |
Hyp |
Ref |
Expression |
1 |
|
fprodsplitf.kph |
|- F/ k ph |
2 |
|
fprodsplitf.in |
|- ( ph -> ( A i^i B ) = (/) ) |
3 |
|
fprodsplitf.un |
|- ( ph -> U = ( A u. B ) ) |
4 |
|
fprodsplitf.fi |
|- ( ph -> U e. Fin ) |
5 |
|
fprodsplitf.c |
|- ( ( ph /\ k e. U ) -> C e. CC ) |
6 |
|
nfv |
|- F/ k j e. U |
7 |
1 6
|
nfan |
|- F/ k ( ph /\ j e. U ) |
8 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ C |
9 |
8
|
nfel1 |
|- F/ k [_ j / k ]_ C e. CC |
10 |
7 9
|
nfim |
|- F/ k ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
11 |
|
eleq1w |
|- ( k = j -> ( k e. U <-> j e. U ) ) |
12 |
11
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. U ) <-> ( ph /\ j e. U ) ) ) |
13 |
|
csbeq1a |
|- ( k = j -> C = [_ j / k ]_ C ) |
14 |
13
|
eleq1d |
|- ( k = j -> ( C e. CC <-> [_ j / k ]_ C e. CC ) ) |
15 |
12 14
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. U ) -> C e. CC ) <-> ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) ) ) |
16 |
10 15 5
|
chvarfv |
|- ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
17 |
2 3 4 16
|
fprodsplit |
|- ( ph -> prod_ j e. U [_ j / k ]_ C = ( prod_ j e. A [_ j / k ]_ C x. prod_ j e. B [_ j / k ]_ C ) ) |
18 |
|
nfcv |
|- F/_ j C |
19 |
18 8 13
|
cbvprodi |
|- prod_ k e. U C = prod_ j e. U [_ j / k ]_ C |
20 |
18 8 13
|
cbvprodi |
|- prod_ k e. A C = prod_ j e. A [_ j / k ]_ C |
21 |
18 8 13
|
cbvprodi |
|- prod_ k e. B C = prod_ j e. B [_ j / k ]_ C |
22 |
20 21
|
oveq12i |
|- ( prod_ k e. A C x. prod_ k e. B C ) = ( prod_ j e. A [_ j / k ]_ C x. prod_ j e. B [_ j / k ]_ C ) |
23 |
17 19 22
|
3eqtr4g |
|- ( ph -> prod_ k e. U C = ( prod_ k e. A C x. prod_ k e. B C ) ) |