| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodsplitf.kph |  |-  F/ k ph | 
						
							| 2 |  | fprodsplitf.in |  |-  ( ph -> ( A i^i B ) = (/) ) | 
						
							| 3 |  | fprodsplitf.un |  |-  ( ph -> U = ( A u. B ) ) | 
						
							| 4 |  | fprodsplitf.fi |  |-  ( ph -> U e. Fin ) | 
						
							| 5 |  | fprodsplitf.c |  |-  ( ( ph /\ k e. U ) -> C e. CC ) | 
						
							| 6 |  | nfv |  |-  F/ k j e. U | 
						
							| 7 | 1 6 | nfan |  |-  F/ k ( ph /\ j e. U ) | 
						
							| 8 |  | nfcsb1v |  |-  F/_ k [_ j / k ]_ C | 
						
							| 9 | 8 | nfel1 |  |-  F/ k [_ j / k ]_ C e. CC | 
						
							| 10 | 7 9 | nfim |  |-  F/ k ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) | 
						
							| 11 |  | eleq1w |  |-  ( k = j -> ( k e. U <-> j e. U ) ) | 
						
							| 12 | 11 | anbi2d |  |-  ( k = j -> ( ( ph /\ k e. U ) <-> ( ph /\ j e. U ) ) ) | 
						
							| 13 |  | csbeq1a |  |-  ( k = j -> C = [_ j / k ]_ C ) | 
						
							| 14 | 13 | eleq1d |  |-  ( k = j -> ( C e. CC <-> [_ j / k ]_ C e. CC ) ) | 
						
							| 15 | 12 14 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. U ) -> C e. CC ) <-> ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) ) ) | 
						
							| 16 | 10 15 5 | chvarfv |  |-  ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) | 
						
							| 17 | 2 3 4 16 | fprodsplit |  |-  ( ph -> prod_ j e. U [_ j / k ]_ C = ( prod_ j e. A [_ j / k ]_ C x. prod_ j e. B [_ j / k ]_ C ) ) | 
						
							| 18 |  | nfcv |  |-  F/_ j C | 
						
							| 19 | 18 8 13 | cbvprodi |  |-  prod_ k e. U C = prod_ j e. U [_ j / k ]_ C | 
						
							| 20 | 18 8 13 | cbvprodi |  |-  prod_ k e. A C = prod_ j e. A [_ j / k ]_ C | 
						
							| 21 | 18 8 13 | cbvprodi |  |-  prod_ k e. B C = prod_ j e. B [_ j / k ]_ C | 
						
							| 22 | 20 21 | oveq12i |  |-  ( prod_ k e. A C x. prod_ k e. B C ) = ( prod_ j e. A [_ j / k ]_ C x. prod_ j e. B [_ j / k ]_ C ) | 
						
							| 23 | 17 19 22 | 3eqtr4g |  |-  ( ph -> prod_ k e. U C = ( prod_ k e. A C x. prod_ k e. B C ) ) |