Step |
Hyp |
Ref |
Expression |
1 |
|
fprodss.1 |
|- ( ph -> A C_ B ) |
2 |
|
fprodss.2 |
|- ( ( ph /\ k e. A ) -> C e. CC ) |
3 |
|
fprodss.3 |
|- ( ( ph /\ k e. ( B \ A ) ) -> C = 1 ) |
4 |
|
fprodss.4 |
|- ( ph -> B e. Fin ) |
5 |
|
sseq2 |
|- ( B = (/) -> ( A C_ B <-> A C_ (/) ) ) |
6 |
|
ss0 |
|- ( A C_ (/) -> A = (/) ) |
7 |
5 6
|
syl6bi |
|- ( B = (/) -> ( A C_ B -> A = (/) ) ) |
8 |
|
prodeq1 |
|- ( A = (/) -> prod_ k e. A C = prod_ k e. (/) C ) |
9 |
|
prodeq1 |
|- ( B = (/) -> prod_ k e. B C = prod_ k e. (/) C ) |
10 |
9
|
eqcomd |
|- ( B = (/) -> prod_ k e. (/) C = prod_ k e. B C ) |
11 |
8 10
|
sylan9eq |
|- ( ( A = (/) /\ B = (/) ) -> prod_ k e. A C = prod_ k e. B C ) |
12 |
11
|
expcom |
|- ( B = (/) -> ( A = (/) -> prod_ k e. A C = prod_ k e. B C ) ) |
13 |
7 12
|
syld |
|- ( B = (/) -> ( A C_ B -> prod_ k e. A C = prod_ k e. B C ) ) |
14 |
1 13
|
syl5com |
|- ( ph -> ( B = (/) -> prod_ k e. A C = prod_ k e. B C ) ) |
15 |
|
cnvimass |
|- ( `' f " A ) C_ dom f |
16 |
|
simprr |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) |
17 |
|
f1of |
|- ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> f : ( 1 ... ( # ` B ) ) --> B ) |
18 |
16 17
|
syl |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) --> B ) |
19 |
15 18
|
fssdm |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( `' f " A ) C_ ( 1 ... ( # ` B ) ) ) |
20 |
|
f1ofn |
|- ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> f Fn ( 1 ... ( # ` B ) ) ) |
21 |
|
elpreima |
|- ( f Fn ( 1 ... ( # ` B ) ) -> ( n e. ( `' f " A ) <-> ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) ) ) |
22 |
16 20 21
|
3syl |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( n e. ( `' f " A ) <-> ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) ) ) |
23 |
18
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( 1 ... ( # ` B ) ) ) -> ( f ` n ) e. B ) |
24 |
23
|
ex |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( n e. ( 1 ... ( # ` B ) ) -> ( f ` n ) e. B ) ) |
25 |
24
|
adantrd |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) -> ( f ` n ) e. B ) ) |
26 |
22 25
|
sylbid |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( n e. ( `' f " A ) -> ( f ` n ) e. B ) ) |
27 |
26
|
imp |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( `' f " A ) ) -> ( f ` n ) e. B ) |
28 |
2
|
ex |
|- ( ph -> ( k e. A -> C e. CC ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ k e. B ) -> ( k e. A -> C e. CC ) ) |
30 |
|
eldif |
|- ( k e. ( B \ A ) <-> ( k e. B /\ -. k e. A ) ) |
31 |
|
ax-1cn |
|- 1 e. CC |
32 |
3 31
|
eqeltrdi |
|- ( ( ph /\ k e. ( B \ A ) ) -> C e. CC ) |
33 |
30 32
|
sylan2br |
|- ( ( ph /\ ( k e. B /\ -. k e. A ) ) -> C e. CC ) |
34 |
33
|
expr |
|- ( ( ph /\ k e. B ) -> ( -. k e. A -> C e. CC ) ) |
35 |
29 34
|
pm2.61d |
|- ( ( ph /\ k e. B ) -> C e. CC ) |
36 |
35
|
adantlr |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ k e. B ) -> C e. CC ) |
37 |
36
|
fmpttd |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( k e. B |-> C ) : B --> CC ) |
38 |
37
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ ( f ` n ) e. B ) -> ( ( k e. B |-> C ) ` ( f ` n ) ) e. CC ) |
39 |
27 38
|
syldan |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( `' f " A ) ) -> ( ( k e. B |-> C ) ` ( f ` n ) ) e. CC ) |
40 |
|
eqid |
|- ( ZZ>= ` 1 ) = ( ZZ>= ` 1 ) |
41 |
|
simprl |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( # ` B ) e. NN ) |
42 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
43 |
41 42
|
eleqtrdi |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( # ` B ) e. ( ZZ>= ` 1 ) ) |
44 |
|
ssidd |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( 1 ... ( # ` B ) ) C_ ( 1 ... ( # ` B ) ) ) |
45 |
40 43 44
|
fprodntriv |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> E. m e. ( ZZ>= ` 1 ) E. y ( y =/= 0 /\ seq m ( x. , ( n e. ( ZZ>= ` 1 ) |-> if ( n e. ( 1 ... ( # ` B ) ) , ( ( k e. B |-> C ) ` ( f ` n ) ) , 1 ) ) ) ~~> y ) ) |
46 |
|
eldifi |
|- ( n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) -> n e. ( 1 ... ( # ` B ) ) ) |
47 |
46 23
|
sylan2 |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( f ` n ) e. B ) |
48 |
|
eldifn |
|- ( n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) -> -. n e. ( `' f " A ) ) |
49 |
48
|
adantl |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> -. n e. ( `' f " A ) ) |
50 |
46
|
adantl |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> n e. ( 1 ... ( # ` B ) ) ) |
51 |
22
|
adantr |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( n e. ( `' f " A ) <-> ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) ) ) |
52 |
50 51
|
mpbirand |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( n e. ( `' f " A ) <-> ( f ` n ) e. A ) ) |
53 |
49 52
|
mtbid |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> -. ( f ` n ) e. A ) |
54 |
47 53
|
eldifd |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( f ` n ) e. ( B \ A ) ) |
55 |
|
difss |
|- ( B \ A ) C_ B |
56 |
|
resmpt |
|- ( ( B \ A ) C_ B -> ( ( k e. B |-> C ) |` ( B \ A ) ) = ( k e. ( B \ A ) |-> C ) ) |
57 |
55 56
|
ax-mp |
|- ( ( k e. B |-> C ) |` ( B \ A ) ) = ( k e. ( B \ A ) |-> C ) |
58 |
57
|
fveq1i |
|- ( ( ( k e. B |-> C ) |` ( B \ A ) ) ` ( f ` n ) ) = ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) |
59 |
|
fvres |
|- ( ( f ` n ) e. ( B \ A ) -> ( ( ( k e. B |-> C ) |` ( B \ A ) ) ` ( f ` n ) ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
60 |
58 59
|
eqtr3id |
|- ( ( f ` n ) e. ( B \ A ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
61 |
54 60
|
syl |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
62 |
|
1ex |
|- 1 e. _V |
63 |
62
|
elsn2 |
|- ( C e. { 1 } <-> C = 1 ) |
64 |
3 63
|
sylibr |
|- ( ( ph /\ k e. ( B \ A ) ) -> C e. { 1 } ) |
65 |
64
|
fmpttd |
|- ( ph -> ( k e. ( B \ A ) |-> C ) : ( B \ A ) --> { 1 } ) |
66 |
65
|
ad2antrr |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( k e. ( B \ A ) |-> C ) : ( B \ A ) --> { 1 } ) |
67 |
66 54
|
ffvelrnd |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) e. { 1 } ) |
68 |
|
elsni |
|- ( ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) e. { 1 } -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = 1 ) |
69 |
67 68
|
syl |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = 1 ) |
70 |
61 69
|
eqtr3d |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. B |-> C ) ` ( f ` n ) ) = 1 ) |
71 |
|
fzssuz |
|- ( 1 ... ( # ` B ) ) C_ ( ZZ>= ` 1 ) |
72 |
71
|
a1i |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( 1 ... ( # ` B ) ) C_ ( ZZ>= ` 1 ) ) |
73 |
19 39 45 70 72
|
prodss |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ n e. ( `' f " A ) ( ( k e. B |-> C ) ` ( f ` n ) ) = prod_ n e. ( 1 ... ( # ` B ) ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
74 |
1
|
adantr |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> A C_ B ) |
75 |
74
|
resmptd |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( ( k e. B |-> C ) |` A ) = ( k e. A |-> C ) ) |
76 |
75
|
fveq1d |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( ( ( k e. B |-> C ) |` A ) ` m ) = ( ( k e. A |-> C ) ` m ) ) |
77 |
|
fvres |
|- ( m e. A -> ( ( ( k e. B |-> C ) |` A ) ` m ) = ( ( k e. B |-> C ) ` m ) ) |
78 |
76 77
|
sylan9req |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> ( ( k e. A |-> C ) ` m ) = ( ( k e. B |-> C ) ` m ) ) |
79 |
78
|
prodeq2dv |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ m e. A ( ( k e. A |-> C ) ` m ) = prod_ m e. A ( ( k e. B |-> C ) ` m ) ) |
80 |
|
fveq2 |
|- ( m = ( f ` n ) -> ( ( k e. B |-> C ) ` m ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
81 |
|
fzfid |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( 1 ... ( # ` B ) ) e. Fin ) |
82 |
81 18
|
fisuppfi |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( `' f " A ) e. Fin ) |
83 |
|
f1of1 |
|- ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> f : ( 1 ... ( # ` B ) ) -1-1-> B ) |
84 |
16 83
|
syl |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) -1-1-> B ) |
85 |
|
f1ores |
|- ( ( f : ( 1 ... ( # ` B ) ) -1-1-> B /\ ( `' f " A ) C_ ( 1 ... ( # ` B ) ) ) -> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> ( f " ( `' f " A ) ) ) |
86 |
84 19 85
|
syl2anc |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> ( f " ( `' f " A ) ) ) |
87 |
|
f1ofo |
|- ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> f : ( 1 ... ( # ` B ) ) -onto-> B ) |
88 |
16 87
|
syl |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) -onto-> B ) |
89 |
|
foimacnv |
|- ( ( f : ( 1 ... ( # ` B ) ) -onto-> B /\ A C_ B ) -> ( f " ( `' f " A ) ) = A ) |
90 |
88 74 89
|
syl2anc |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( f " ( `' f " A ) ) = A ) |
91 |
90
|
f1oeq3d |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> ( f " ( `' f " A ) ) <-> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) ) |
92 |
86 91
|
mpbid |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) |
93 |
|
fvres |
|- ( n e. ( `' f " A ) -> ( ( f |` ( `' f " A ) ) ` n ) = ( f ` n ) ) |
94 |
93
|
adantl |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( `' f " A ) ) -> ( ( f |` ( `' f " A ) ) ` n ) = ( f ` n ) ) |
95 |
74
|
sselda |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> m e. B ) |
96 |
37
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. B ) -> ( ( k e. B |-> C ) ` m ) e. CC ) |
97 |
95 96
|
syldan |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> ( ( k e. B |-> C ) ` m ) e. CC ) |
98 |
80 82 92 94 97
|
fprodf1o |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ m e. A ( ( k e. B |-> C ) ` m ) = prod_ n e. ( `' f " A ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
99 |
79 98
|
eqtrd |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ m e. A ( ( k e. A |-> C ) ` m ) = prod_ n e. ( `' f " A ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
100 |
|
eqidd |
|- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( 1 ... ( # ` B ) ) ) -> ( f ` n ) = ( f ` n ) ) |
101 |
80 81 16 100 96
|
fprodf1o |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ m e. B ( ( k e. B |-> C ) ` m ) = prod_ n e. ( 1 ... ( # ` B ) ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
102 |
73 99 101
|
3eqtr4d |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ m e. A ( ( k e. A |-> C ) ` m ) = prod_ m e. B ( ( k e. B |-> C ) ` m ) ) |
103 |
|
prodfc |
|- prod_ m e. A ( ( k e. A |-> C ) ` m ) = prod_ k e. A C |
104 |
|
prodfc |
|- prod_ m e. B ( ( k e. B |-> C ) ` m ) = prod_ k e. B C |
105 |
102 103 104
|
3eqtr3g |
|- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ k e. A C = prod_ k e. B C ) |
106 |
105
|
expr |
|- ( ( ph /\ ( # ` B ) e. NN ) -> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> prod_ k e. A C = prod_ k e. B C ) ) |
107 |
106
|
exlimdv |
|- ( ( ph /\ ( # ` B ) e. NN ) -> ( E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> prod_ k e. A C = prod_ k e. B C ) ) |
108 |
107
|
expimpd |
|- ( ph -> ( ( ( # ` B ) e. NN /\ E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) -> prod_ k e. A C = prod_ k e. B C ) ) |
109 |
|
fz1f1o |
|- ( B e. Fin -> ( B = (/) \/ ( ( # ` B ) e. NN /\ E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) ) |
110 |
4 109
|
syl |
|- ( ph -> ( B = (/) \/ ( ( # ` B ) e. NN /\ E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) ) |
111 |
14 108 110
|
mpjaod |
|- ( ph -> prod_ k e. A C = prod_ k e. B C ) |