Description: The sequence S of finite products, where every factor is subtracted an "always smaller" amount, converges to the finite product of the factors. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodsubrecnncnv.1 | |- F/ k ph |
|
fprodsubrecnncnv.2 | |- ( ph -> X e. Fin ) |
||
fprodsubrecnncnv.3 | |- ( ( ph /\ k e. X ) -> A e. CC ) |
||
fprodsubrecnncnv.4 | |- S = ( n e. NN |-> prod_ k e. X ( A - ( 1 / n ) ) ) |
||
Assertion | fprodsubrecnncnv | |- ( ph -> S ~~> prod_ k e. X A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsubrecnncnv.1 | |- F/ k ph |
|
2 | fprodsubrecnncnv.2 | |- ( ph -> X e. Fin ) |
|
3 | fprodsubrecnncnv.3 | |- ( ( ph /\ k e. X ) -> A e. CC ) |
|
4 | fprodsubrecnncnv.4 | |- S = ( n e. NN |-> prod_ k e. X ( A - ( 1 / n ) ) ) |
|
5 | eqid | |- ( x e. CC |-> prod_ k e. X ( A - x ) ) = ( x e. CC |-> prod_ k e. X ( A - x ) ) |
|
6 | oveq2 | |- ( m = n -> ( 1 / m ) = ( 1 / n ) ) |
|
7 | 6 | cbvmptv | |- ( m e. NN |-> ( 1 / m ) ) = ( n e. NN |-> ( 1 / n ) ) |
8 | 1 2 3 4 5 7 | fprodsubrecnncnvlem | |- ( ph -> S ~~> prod_ k e. X A ) |