Description: Closure of a finite product of integers. (Contributed by Scott Fenton, 14-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodcl.1 | |- ( ph -> A e. Fin ) |
|
fprodzcl.2 | |- ( ( ph /\ k e. A ) -> B e. ZZ ) |
||
Assertion | fprodzcl | |- ( ph -> prod_ k e. A B e. ZZ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcl.1 | |- ( ph -> A e. Fin ) |
|
2 | fprodzcl.2 | |- ( ( ph /\ k e. A ) -> B e. ZZ ) |
|
3 | zsscn | |- ZZ C_ CC |
|
4 | 3 | a1i | |- ( ph -> ZZ C_ CC ) |
5 | zmulcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
|
6 | 5 | adantl | |- ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) |
7 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
8 | 4 6 1 2 7 | fprodcllem | |- ( ph -> prod_ k e. A B e. ZZ ) |