Metamath Proof Explorer


Theorem fprodzcl

Description: Closure of a finite product of integers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1
|- ( ph -> A e. Fin )
fprodzcl.2
|- ( ( ph /\ k e. A ) -> B e. ZZ )
Assertion fprodzcl
|- ( ph -> prod_ k e. A B e. ZZ )

Proof

Step Hyp Ref Expression
1 fprodcl.1
 |-  ( ph -> A e. Fin )
2 fprodzcl.2
 |-  ( ( ph /\ k e. A ) -> B e. ZZ )
3 zsscn
 |-  ZZ C_ CC
4 3 a1i
 |-  ( ph -> ZZ C_ CC )
5 zmulcl
 |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ )
6 5 adantl
 |-  ( ( ph /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ )
7 1zzd
 |-  ( ph -> 1 e. ZZ )
8 4 6 1 2 7 fprodcllem
 |-  ( ph -> prod_ k e. A B e. ZZ )