Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } |
2 |
|
fpwwe.2 |
|- ( ph -> A e. V ) |
3 |
|
fpwwe.3 |
|- ( ( ph /\ x e. ( ~P A i^i dom card ) ) -> ( F ` x ) e. A ) |
4 |
|
fpwwe.4 |
|- X = U. dom W |
5 |
|
df-ov |
|- ( Y ( F o. 1st ) R ) = ( ( F o. 1st ) ` <. Y , R >. ) |
6 |
|
fo1st |
|- 1st : _V -onto-> _V |
7 |
|
fofn |
|- ( 1st : _V -onto-> _V -> 1st Fn _V ) |
8 |
6 7
|
ax-mp |
|- 1st Fn _V |
9 |
|
opex |
|- <. Y , R >. e. _V |
10 |
|
fvco2 |
|- ( ( 1st Fn _V /\ <. Y , R >. e. _V ) -> ( ( F o. 1st ) ` <. Y , R >. ) = ( F ` ( 1st ` <. Y , R >. ) ) ) |
11 |
8 9 10
|
mp2an |
|- ( ( F o. 1st ) ` <. Y , R >. ) = ( F ` ( 1st ` <. Y , R >. ) ) |
12 |
5 11
|
eqtri |
|- ( Y ( F o. 1st ) R ) = ( F ` ( 1st ` <. Y , R >. ) ) |
13 |
1
|
bropaex12 |
|- ( Y W R -> ( Y e. _V /\ R e. _V ) ) |
14 |
|
op1stg |
|- ( ( Y e. _V /\ R e. _V ) -> ( 1st ` <. Y , R >. ) = Y ) |
15 |
13 14
|
syl |
|- ( Y W R -> ( 1st ` <. Y , R >. ) = Y ) |
16 |
15
|
fveq2d |
|- ( Y W R -> ( F ` ( 1st ` <. Y , R >. ) ) = ( F ` Y ) ) |
17 |
12 16
|
eqtrid |
|- ( Y W R -> ( Y ( F o. 1st ) R ) = ( F ` Y ) ) |
18 |
17
|
eleq1d |
|- ( Y W R -> ( ( Y ( F o. 1st ) R ) e. Y <-> ( F ` Y ) e. Y ) ) |
19 |
18
|
pm5.32i |
|- ( ( Y W R /\ ( Y ( F o. 1st ) R ) e. Y ) <-> ( Y W R /\ ( F ` Y ) e. Y ) ) |
20 |
|
vex |
|- r e. _V |
21 |
20
|
cnvex |
|- `' r e. _V |
22 |
21
|
imaex |
|- ( `' r " { y } ) e. _V |
23 |
|
vex |
|- u e. _V |
24 |
20
|
inex1 |
|- ( r i^i ( u X. u ) ) e. _V |
25 |
23 24
|
opco1i |
|- ( u ( F o. 1st ) ( r i^i ( u X. u ) ) ) = ( F ` u ) |
26 |
|
fveq2 |
|- ( u = ( `' r " { y } ) -> ( F ` u ) = ( F ` ( `' r " { y } ) ) ) |
27 |
25 26
|
eqtrid |
|- ( u = ( `' r " { y } ) -> ( u ( F o. 1st ) ( r i^i ( u X. u ) ) ) = ( F ` ( `' r " { y } ) ) ) |
28 |
27
|
eqeq1d |
|- ( u = ( `' r " { y } ) -> ( ( u ( F o. 1st ) ( r i^i ( u X. u ) ) ) = y <-> ( F ` ( `' r " { y } ) ) = y ) ) |
29 |
22 28
|
sbcie |
|- ( [. ( `' r " { y } ) / u ]. ( u ( F o. 1st ) ( r i^i ( u X. u ) ) ) = y <-> ( F ` ( `' r " { y } ) ) = y ) |
30 |
29
|
ralbii |
|- ( A. y e. x [. ( `' r " { y } ) / u ]. ( u ( F o. 1st ) ( r i^i ( u X. u ) ) ) = y <-> A. y e. x ( F ` ( `' r " { y } ) ) = y ) |
31 |
30
|
anbi2i |
|- ( ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u ( F o. 1st ) ( r i^i ( u X. u ) ) ) = y ) <-> ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) |
32 |
31
|
anbi2i |
|- ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u ( F o. 1st ) ( r i^i ( u X. u ) ) ) = y ) ) <-> ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) ) |
33 |
32
|
opabbii |
|- { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u ( F o. 1st ) ( r i^i ( u X. u ) ) ) = y ) ) } = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } |
34 |
1 33
|
eqtr4i |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u ( F o. 1st ) ( r i^i ( u X. u ) ) ) = y ) ) } |
35 |
|
vex |
|- x e. _V |
36 |
35 20
|
opco1i |
|- ( x ( F o. 1st ) r ) = ( F ` x ) |
37 |
|
simp1 |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> x C_ A ) |
38 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
39 |
37 38
|
sylibr |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> x e. ~P A ) |
40 |
|
19.8a |
|- ( r We x -> E. r r We x ) |
41 |
40
|
3ad2ant3 |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> E. r r We x ) |
42 |
|
ween |
|- ( x e. dom card <-> E. r r We x ) |
43 |
41 42
|
sylibr |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> x e. dom card ) |
44 |
39 43
|
elind |
|- ( ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) -> x e. ( ~P A i^i dom card ) ) |
45 |
44 3
|
sylan2 |
|- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( F ` x ) e. A ) |
46 |
36 45
|
eqeltrid |
|- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x ( F o. 1st ) r ) e. A ) |
47 |
34 2 46 4
|
fpwwe2 |
|- ( ph -> ( ( Y W R /\ ( Y ( F o. 1st ) R ) e. Y ) <-> ( Y = X /\ R = ( W ` X ) ) ) ) |
48 |
19 47
|
bitr3id |
|- ( ph -> ( ( Y W R /\ ( F ` Y ) e. Y ) <-> ( Y = X /\ R = ( W ` X ) ) ) ) |